A069151 Concatenations of consecutive primes, starting with 2, that are also prime.
2, 23, 2357
Offset: 1
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, NY, 2005; see p. 78. [The 2002 printing states incorrectly that 2357...5441 is prime.]
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..5
- M. Fleuren, Smarandache Concatenated Primes
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Eric Weisstein's World of Mathematics, Smarandache-Wellin Number
- Eric Weisstein's World of Mathematics, Smarandache-Wellin Prime
- Wikipedia, Smarandache-Wellin number
- Index entries for sequences related to Most Wanted Primes video
Crossrefs
Programs
-
Mathematica
Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[ Range[10^3]]]]], ?PrimeQ] (* _Eric W. Weisstein, Oct 30 2015 *) Select[Table[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],{n,500}],PrimeQ] (* Harvey P. Dale, Oct 03 2024 *)
-
PARI
s=""; for(n=1, 200, s=concat(s, prime(n)); if(ispseudoprime( eval(s)), print1(s", "))) \\ Jens Kruse Andersen, Jun 26 2014
-
Python
from sympy import isprime, nextprime def afind(terms, verbose=False): n, p, pstr = 0, 2, "2" while n < terms: if isprime(int(pstr)): n += 1; print(n, int(pstr)) p = nextprime(p); pstr += str(p) afind(5) # Michael S. Branicky, Feb 23 2021
Extensions
Edited by Robert G. Wilson v, Apr 11 2002
Entry revised Jan 18 2004
Comments