cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A263959 Number of decimal digits in A069151(n).

Original entry on oeis.org

1, 2, 4, 355, 499, 1171, 1543, 5719
Offset: 1

Views

Author

Eric W. Weisstein, Oct 30 2015

Keywords

Comments

Subset of A227530 (Copeland-Erdős constant primes) corresponding to concatenation of a full (non-truncated) final prime.
a(9) > 459970. - Eric W. Weisstein (according to Mark Rodenkirch as of Nov 21 2015)

Crossrefs

Cf. A227529 (Copeland-Erdős constant primes).
Cf. A227530 (decimal digits in n-th Copeland-Erdős constant prime).

Programs

  • Mathematica
    Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[10^3]]]]], p_?PrimeQ :> IntegerLength[p]]
  • PARI
    p=""; for(n=1, 1e4, p=concat(p, prime(n)); if(ispseudoprime( eval(p)), print1(#Str(p)", "))) \\ Altug Alkan, Oct 30 2015

A019518 Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).

Original entry on oeis.org

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
Offset: 1

Views

Author

R. Muller

Keywords

Examples

			E.g. a(6) = 2_3_5_7_11_13 = 23571113.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

For the primes in this sequence see A069151. For where the primes occur see A046035.
Cf. A000040, A038394, A046284, A068670 (number of digits).

Programs

  • Haskell
    a019518 n = a019518_list !! (n-1)
    a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
    -- Reinhard Zumkeller, Mar 03 2014
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
  • Mathematica
    ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
    Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]],{i,15}] (* Jayanta Basu, May 30 2013 *)
  • PARI
    s="";for(n=1,30,print1(s=Str(s,prime(n))",")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
    
  • PARI
    A019518(n)=eval(concat(concat([""],primes(n)))) \\ Faster than concat(apply(s->Str(s),primes(n))) or forprime(...s=Str(s,p)). - M. F. Hasler, Oct 06 2013
    

Extensions

Definition edited by N. J. A. Sloane, Jul 02 2017

A046035 Numbers k such that the concatenation of the first k primes (A019518) is a prime.

Original entry on oeis.org

1, 2, 4, 128, 174, 342, 435, 1429
Offset: 1

Views

Author

Keywords

Comments

No other terms with k <= 34736. - Eric W. Weisstein, Oct 30 2015

Examples

			4 is a term since 2357 is a prime. [Corrected by Ed Murphy (emurphy42(AT)socal.rr.com), May 15 2007]
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that 719 is a term.]

Crossrefs

Cf. A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).

Programs

  • Mathematica
    max = 1500; With[{primes = Prime[Range[max]]}, Flatten[Position[ Table[ FromDigits[Flatten[IntegerDigits/@Take[primes, n]]], {n, max}], ?PrimeQ]]] (* _Harvey P. Dale, Dec 17 2013 *)
    Position[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[ 10^3]]]]], ?PrimeQ] // Flatten (* _Eric W. Weisstein, Oct 30 2015 *)
  • PARI
    p=""; for(n=1, 2000, p=concat(p, prime(n)); if(ispseudoprime(eval(p)), print1(n", "))) \\ Altug Alkan, Oct 30 2015

Formula

a(n) = A000720(A046284(n)), or A046284(n) = prime(a(n)).

A046284 Primes p such that concatenation of primes from 2 through p is a prime.

Original entry on oeis.org

2, 3, 7, 719, 1033, 2297, 3037, 11927
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

"w_n = (P_1)(P_2) ... (P_n) [A019518], by which notation we mean that w_n is constructed in decimal by simple concatenation of digits [much like the Almost Natural numbers (A007376)]. For example, the first few w_n are 2, 23, 235, 2357, 235711, ... ." - Crandall and Pomerance

Examples

			7 is a member, since 2357 is a prime.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that 5441 is a term.]

Crossrefs

Cf. A019518, A033308, A069151. a(n) = prime(A046035(n)).

Programs

  • Mathematica
    a = ""; Do[a = StringJoin[a, ToString[ Prime[n]]]; If[ PrimeQ[ ToExpression[a]], Print[n]], {n, 1, 1429}]

Extensions

Additional comments from Robert G. Wilson v, Sep 10 2001

A227529 Copeland-Erdős constant primes (concatenation of entries (digits) of A033308 is prime).

Original entry on oeis.org

2, 23, 2357, 23571113171
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2013

Keywords

Comments

Primes obtained by taking consecutive decimal digits (starting with the first) of the Copeland-Erdős constant.
The next terms are too big to display: a(5) = 235711131...6917017097 (353 digits), a(6) = 235711131...1701709719 (355 digits), ...
See A227530 for an equivalent but more compact way of listing the terms, namely, by giving the number of digits of the constant A033308 that must be taken to get a prime. - M. F. Hasler, Apr 24 2017

Crossrefs

Cf. A227530 (number of decimal digits in the n-th Copeland-Erdős prime).
Cf. A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).

A240563 Primes formed from concatenation of higher primes onto the previous entry until prime, starting from 2.

Original entry on oeis.org

2, 23, 2311, 231131, 23113147, 23113147229, 23113147229251, 23113147229251577, 23113147229251577857, 23113147229251577857859, 23113147229251577857859911, 231131472292515778578599111123, 2311314722925157785785991111231223
Offset: 1

Views

Author

Bill McEachen, Apr 07 2014

Keywords

Comments

This generates a monotonically increasing sequence, nicely spread out, likely infinite. By altering the starting prime value, a family of such sequences can easily be generated.
Derived from A080155. - T. D. Noe, Apr 11 2014
From the first 155 points, with x = #digits, y = sequence pointer y~ A*x^B with (A, B) = (0.6624, 0.8106). This indicates a 100-digit prime in the vicinity of y = 28 for example. - Bill McEachen, Apr 13 2014
Only from the first 100 entries, it would appear that an upper bound on the number of digits in a(n) is A092777(n). - Bill McEachen, Sep 15 2015

Examples

			Begin from 2.
Next we try 23 - it is prime, this sets next iteration (23 is the "constant" part), upon which we try higher primes.
Next we try 235 - composite; next we try 237 - composite; next we try 2311 - prime, this sets next iteration (2311 now becomes the "constant" part), upon which we try higher primes.
Next we try 231113 - composite; next we try 231117 - composite; ...; next we try 231131 - prime, this sets next iteration (231131 now becomes the "constant" part), upon which we try higher primes.
Next we try 23113147 - prime, this sets next iteration (23113147 now becomes the "constant" part), upon which we try higher primes.
		

Crossrefs

Cf. A069151 (variant).
Cf. A080155 (primes used in concatenation).

Programs

  • Maple
    X:= 2: p:= 3: a[1]:= 2:
    for i from 2 to 30 do
      while not isprime(X*10^(1+ilog10(p))+p) do
         p:= nextprime(p)
      od:
      X:= X*10^(1+ilog10(p))+p;
      a[i]:= X;
      p:= nextprime(p);
    od:
    seq(a[i],i=1..30); # Robert Israel, Sep 15 2015
  • Mathematica
    s[1] = 2; s[n_] := s[n] = Block[{d = Flatten[IntegerDigits /@ Array[s, n-1]], p = NextPrime@s[n - 1]}, While[! PrimeQ@ FromDigits@ Join[d, IntegerDigits@p], p = NextPrime@p]; p]; a[n_] := FromDigits@ Flatten[ IntegerDigits /@ Array[s, n]]; Array[a, 10] (* Giovanni Resta, Apr 09 2014 *)
  • PARI
    print1(N=2); p=3; for(n=2,10, while(!isprime(eval(Str(N,p))), p=nextprime(p+1)); N=eval(Str(N,p)); p=nextprime(p+1); print1(", "N)) \\ Charles R Greathouse IV, Apr 09 2014

Extensions

a(7)-a(13) from Giovanni Resta, Apr 09 2014

A227530 Integer lengths of the n-th Copeland-Erdős prime (concatenation of the first n entries (digits) of A033308 is prime).

Original entry on oeis.org

1, 2, 4, 11, 353, 355, 499, 1171, 1543, 5719, 11048, 68433, 97855, 292447
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2013

Keywords

Comments

a(15) > 300000. - Eric W. Weisstein (according to Mark Rodenkirch as of Dec 13 2015)
The larger of these are probable primes.
a(15) > 5*10^5 according to Mark Rodenkirch, June 2016. - M. F. Hasler, Apr 24 2017

Crossrefs

Cf. A227529 (primes corresponding to a(n) digits of the Copeland-Erdős constant), A019518, A069151.
Cf. also A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).

Extensions

a(12) = 68433 from Eric W. Weisstein, Aug 17 2013
a(13) = 97855 from Eric W. Weisstein, Oct 24 2015
a(14) = 292447 from Eric W. Weisstein, Dec 17 2015

A276481 Numbers k such that b(k) is prime, where b(1) = prime(1) = 2, b(n) = 10*b(n-1) + (prime(n) mod 10).

Original entry on oeis.org

1, 2, 4, 13, 16, 17, 28, 34, 90, 100, 132, 331, 534, 7923, 10157, 40197
Offset: 1

Views

Author

Thomas Ordowski, Sep 05 2016

Keywords

Comments

Primes in the sequence b(n) are 2, 23, 2357, 2357137939171, ...
a(17) > 50000. - Michael S. Branicky, Aug 12 2025

Crossrefs

Programs

  • Maple
    Res:= NULL: p:= 0: b:= 0:
    for n from 1 to 600 do
      p:= nextprime(p);
      b:= 10*b + (p mod 10);
      if isprime(b) then Res:= Res, n fi
    od:
    Res; # Robert Israel, Sep 05 2016
  • Mathematica
    b[1] = Prime@ 1; b[n_] := b[n] = 10 b[n - 1] + Mod[Prime@ n, 10]; Select[Range[10^3], PrimeQ@ b[#] &] (* Michael De Vlieger, Sep 06 2016 *)
  • PARI
    b(n) = if (n==1, 2, 10*b(n-1) + (prime(n) % 10));
    isok(n) = isprime(b(n)); \\ Michel Marcus, Sep 05 2016
    
  • PARI
    list(lim)=my(v=List(),s,n); forprime(p=2,, if(n++>lim, return(Vec(v))); if(ispseudoprime(s=10*s+p%10), listput(v, n))) \\ Charles R Greathouse IV, Sep 05 2016

Formula

{k | A386964(k) is prime}. - Michael S. Branicky, Aug 12 2025

Extensions

a(7)-a(13) from Michel Marcus, Sep 05 2016
a(14) from Robert Israel, Sep 05 2016
a(15)-a(16) from Michael S. Branicky, Aug 11 2025

A283802 Numbers k such that the concatenation of the first k odd composite numbers is a prime.

Original entry on oeis.org

21, 73, 132
Offset: 1

Views

Author

XU Pingya, Mar 17 2017

Keywords

Comments

Indices k for which A283801(k) is prime.
A283801(21) = 91521252733353945495155576365697577818587 is a 41-digit prime;
A283801(73) = 91521...247249253 is a 193-digit prime;
A283801(132) = 91521...423425427 is a 370-digit prime.
Next term, if it exists, will be more than 5028.
a(4) > 25000, if it exists. - Michael S. Branicky, Apr 30 2025

Crossrefs

Programs

  • Mathematica
    k = 2; cc = oc = 0; lst = {}; While[k < 428, If[OddQ@k && !PrimeQ@k, cc = cc*10^IntegerLength@k + k; oc++; If[PrimeQ[cc], AppendTo[lst, oc]]]; k++]; lst  (* Robert G. Wilson v, Mar 18 2017 *)
    Module[{nn=501,ocm},ocm=Select[Range[9,nn,2],CompositeQ];Select[ Range[ Length[ ocm]],PrimeQ[FromDigits[Flatten[IntegerDigits/@Take[ocm,#]]]]&]] (* Harvey P. Dale, Sep 02 2022 *)

A379426 Prime terms in A287353.

Original entry on oeis.org

2, 23, 2357, 23581, 2358247, 235824913, 235824916247, 2358249162515829584909, 235824916251582958491829824917162558516292249258249589629182571583855789, 2358249162515829584918298249171625585162922492582495896291825715838558298516316558918298250261
Offset: 1

Views

Author

Ya-Ping Lu, Dec 22 2024

Keywords

Comments

Primes Sum_{i=1..k} 10^(k-i)*prime(i) for some k.

Examples

			k    prime(k)  A287353(k)  n    a(n)
---  --------  ----------  ---  -------
1    2         2           1    2
2    3         23          2    23
3    5         235
4    7         2357        3    2357
5    11        23581       4    23581
6    13        235823
7    17        2358247     5    2358247
		

Crossrefs

Programs

  • Python
    from sympy import isprime, nextprime
    m = p = 0
    while p < 500:
        p = nextprime(p); m = 10*m + p
        if isprime(m): print(m, end = ', ')
Showing 1-10 of 11 results. Next