A263959
Number of decimal digits in A069151(n).
Original entry on oeis.org
1, 2, 4, 355, 499, 1171, 1543, 5719
Offset: 1
Cf.
A227529 (Copeland-Erdős constant primes).
Cf.
A227530 (decimal digits in n-th Copeland-Erdős constant prime).
-
Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[10^3]]]]], p_?PrimeQ :> IntegerLength[p]]
-
p=""; for(n=1, 1e4, p=concat(p, prime(n)); if(ispseudoprime( eval(p)), print1(#Str(p)", "))) \\ Altug Alkan, Oct 30 2015
A019518
Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).
Original entry on oeis.org
2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
Offset: 1
E.g. a(6) = 2_3_5_7_11_13 = 23571113.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..300
- M. Fleuren, Factoring of the Smarandache Concatenated Prime Sequence.
- F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences
- Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
- Index entries for sequences related to Most Wanted Primes video
For the primes in this sequence see
A069151. For where the primes occur see
A046035.
-
a019518 n = a019518_list !! (n-1)
a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
-- Reinhard Zumkeller, Mar 03 2014
-
[Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
-
ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]],{i,15}] (* Jayanta Basu, May 30 2013 *)
-
s="";for(n=1,30,print1(s=Str(s,prime(n))",")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
-
A019518(n)=eval(concat(concat([""],primes(n)))) \\ Faster than concat(apply(s->Str(s),primes(n))) or forprime(...s=Str(s,p)). - M. F. Hasler, Oct 06 2013
A046035
Numbers k such that the concatenation of the first k primes (A019518) is a prime.
Original entry on oeis.org
1, 2, 4, 128, 174, 342, 435, 1429
Offset: 1
4 is a term since 2357 is a prime. [Corrected by Ed Murphy (emurphy42(AT)socal.rr.com), May 15 2007]
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that 719 is a term.]
Cf.
A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).
-
max = 1500; With[{primes = Prime[Range[max]]}, Flatten[Position[ Table[ FromDigits[Flatten[IntegerDigits/@Take[primes, n]]], {n, max}], ?PrimeQ]]] (* _Harvey P. Dale, Dec 17 2013 *)
Position[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[ 10^3]]]]], ?PrimeQ] // Flatten (* _Eric W. Weisstein, Oct 30 2015 *)
-
p=""; for(n=1, 2000, p=concat(p, prime(n)); if(ispseudoprime(eval(p)), print1(n", "))) \\ Altug Alkan, Oct 30 2015
A046284
Primes p such that concatenation of primes from 2 through p is a prime.
Original entry on oeis.org
2, 3, 7, 719, 1033, 2297, 3037, 11927
Offset: 1
7 is a member, since 2357 is a prime.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that 5441 is a term.]
-
a = ""; Do[a = StringJoin[a, ToString[ Prime[n]]]; If[ PrimeQ[ ToExpression[a]], Print[n]], {n, 1, 1429}]
A227529
Copeland-Erdős constant primes (concatenation of entries (digits) of A033308 is prime).
Original entry on oeis.org
2, 23, 2357, 23571113171
Offset: 1
Cf.
A227530 (number of decimal digits in the n-th Copeland-Erdős prime).
Cf.
A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).
A240563
Primes formed from concatenation of higher primes onto the previous entry until prime, starting from 2.
Original entry on oeis.org
2, 23, 2311, 231131, 23113147, 23113147229, 23113147229251, 23113147229251577, 23113147229251577857, 23113147229251577857859, 23113147229251577857859911, 231131472292515778578599111123, 2311314722925157785785991111231223
Offset: 1
Begin from 2.
Next we try 23 - it is prime, this sets next iteration (23 is the "constant" part), upon which we try higher primes.
Next we try 235 - composite; next we try 237 - composite; next we try 2311 - prime, this sets next iteration (2311 now becomes the "constant" part), upon which we try higher primes.
Next we try 231113 - composite; next we try 231117 - composite; ...; next we try 231131 - prime, this sets next iteration (231131 now becomes the "constant" part), upon which we try higher primes.
Next we try 23113147 - prime, this sets next iteration (23113147 now becomes the "constant" part), upon which we try higher primes.
Cf.
A080155 (primes used in concatenation).
-
X:= 2: p:= 3: a[1]:= 2:
for i from 2 to 30 do
while not isprime(X*10^(1+ilog10(p))+p) do
p:= nextprime(p)
od:
X:= X*10^(1+ilog10(p))+p;
a[i]:= X;
p:= nextprime(p);
od:
seq(a[i],i=1..30); # Robert Israel, Sep 15 2015
-
s[1] = 2; s[n_] := s[n] = Block[{d = Flatten[IntegerDigits /@ Array[s, n-1]], p = NextPrime@s[n - 1]}, While[! PrimeQ@ FromDigits@ Join[d, IntegerDigits@p], p = NextPrime@p]; p]; a[n_] := FromDigits@ Flatten[ IntegerDigits /@ Array[s, n]]; Array[a, 10] (* Giovanni Resta, Apr 09 2014 *)
-
print1(N=2); p=3; for(n=2,10, while(!isprime(eval(Str(N,p))), p=nextprime(p+1)); N=eval(Str(N,p)); p=nextprime(p+1); print1(", "N)) \\ Charles R Greathouse IV, Apr 09 2014
A227530
Integer lengths of the n-th Copeland-Erdős prime (concatenation of the first n entries (digits) of A033308 is prime).
Original entry on oeis.org
1, 2, 4, 11, 353, 355, 499, 1171, 1543, 5719, 11048, 68433, 97855, 292447
Offset: 1
Cf. also
A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).
A276481
Numbers k such that b(k) is prime, where b(1) = prime(1) = 2, b(n) = 10*b(n-1) + (prime(n) mod 10).
Original entry on oeis.org
1, 2, 4, 13, 16, 17, 28, 34, 90, 100, 132, 331, 534, 7923, 10157, 40197
Offset: 1
-
Res:= NULL: p:= 0: b:= 0:
for n from 1 to 600 do
p:= nextprime(p);
b:= 10*b + (p mod 10);
if isprime(b) then Res:= Res, n fi
od:
Res; # Robert Israel, Sep 05 2016
-
b[1] = Prime@ 1; b[n_] := b[n] = 10 b[n - 1] + Mod[Prime@ n, 10]; Select[Range[10^3], PrimeQ@ b[#] &] (* Michael De Vlieger, Sep 06 2016 *)
-
b(n) = if (n==1, 2, 10*b(n-1) + (prime(n) % 10));
isok(n) = isprime(b(n)); \\ Michel Marcus, Sep 05 2016
-
list(lim)=my(v=List(),s,n); forprime(p=2,, if(n++>lim, return(Vec(v))); if(ispseudoprime(s=10*s+p%10), listput(v, n))) \\ Charles R Greathouse IV, Sep 05 2016
A283802
Numbers k such that the concatenation of the first k odd composite numbers is a prime.
Original entry on oeis.org
-
k = 2; cc = oc = 0; lst = {}; While[k < 428, If[OddQ@k && !PrimeQ@k, cc = cc*10^IntegerLength@k + k; oc++; If[PrimeQ[cc], AppendTo[lst, oc]]]; k++]; lst (* Robert G. Wilson v, Mar 18 2017 *)
Module[{nn=501,ocm},ocm=Select[Range[9,nn,2],CompositeQ];Select[ Range[ Length[ ocm]],PrimeQ[FromDigits[Flatten[IntegerDigits/@Take[ocm,#]]]]&]] (* Harvey P. Dale, Sep 02 2022 *)
Original entry on oeis.org
2, 23, 2357, 23581, 2358247, 235824913, 235824916247, 2358249162515829584909, 235824916251582958491829824917162558516292249258249589629182571583855789, 2358249162515829584918298249171625585162922492582495896291825715838558298516316558918298250261
Offset: 1
k prime(k) A287353(k) n a(n)
--- -------- ---------- --- -------
1 2 2 1 2
2 3 23 2 23
3 5 235
4 7 2357 3 2357
5 11 23581 4 23581
6 13 235823
7 17 2358247 5 2358247
-
from sympy import isprime, nextprime
m = p = 0
while p < 500:
p = nextprime(p); m = 10*m + p
if isprime(m): print(m, end = ', ')
Showing 1-10 of 11 results.
Comments