A019518
Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).
Original entry on oeis.org
2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
Offset: 1
E.g. a(6) = 2_3_5_7_11_13 = 23571113.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..300
- M. Fleuren, Factoring of the Smarandache Concatenated Prime Sequence.
- F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences
- Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
- Index entries for sequences related to Most Wanted Primes video
For the primes in this sequence see
A069151. For where the primes occur see
A046035.
-
a019518 n = a019518_list !! (n-1)
a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
-- Reinhard Zumkeller, Mar 03 2014
-
[Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
-
ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]],{i,15}] (* Jayanta Basu, May 30 2013 *)
-
s="";for(n=1,30,print1(s=Str(s,prime(n))",")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
-
A019518(n)=eval(concat(concat([""],primes(n)))) \\ Faster than concat(apply(s->Str(s),primes(n))) or forprime(...s=Str(s,p)). - M. F. Hasler, Oct 06 2013
A046035
Numbers k such that the concatenation of the first k primes (A019518) is a prime.
Original entry on oeis.org
1, 2, 4, 128, 174, 342, 435, 1429
Offset: 1
4 is a term since 2357 is a prime. [Corrected by Ed Murphy (emurphy42(AT)socal.rr.com), May 15 2007]
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that 719 is a term.]
Cf.
A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).
-
max = 1500; With[{primes = Prime[Range[max]]}, Flatten[Position[ Table[ FromDigits[Flatten[IntegerDigits/@Take[primes, n]]], {n, max}], ?PrimeQ]]] (* _Harvey P. Dale, Dec 17 2013 *)
Position[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[ 10^3]]]]], ?PrimeQ] // Flatten (* _Eric W. Weisstein, Oct 30 2015 *)
-
p=""; for(n=1, 2000, p=concat(p, prime(n)); if(ispseudoprime(eval(p)), print1(n", "))) \\ Altug Alkan, Oct 30 2015
A069151
Concatenations of consecutive primes, starting with 2, that are also prime.
Original entry on oeis.org
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, NY, 2005; see p. 78. [The 2002 printing states incorrectly that 2357...5441 is prime.]
- Jens Kruse Andersen, Table of n, a(n) for n = 1..5
- M. Fleuren, Smarandache Concatenated Primes
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Eric Weisstein's World of Mathematics, Smarandache-Wellin Number
- Eric Weisstein's World of Mathematics, Smarandache-Wellin Prime
- Wikipedia, Smarandache-Wellin number
- Index entries for sequences related to Most Wanted Primes video
Cf.
A046035 (Numbers n such that the concatenation of the first n primes is prime)
Cf.
A046284 (Primes p such that concatenation of primes from 2 through p is a prime).
Cf.
A030997 (Smallest prime which is a concatenation of n consecutive primes).
-
Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[ Range[10^3]]]]], ?PrimeQ] (* _Eric W. Weisstein, Oct 30 2015 *)
Select[Table[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],{n,500}],PrimeQ] (* Harvey P. Dale, Oct 03 2024 *)
-
s=""; for(n=1, 200, s=concat(s, prime(n)); if(ispseudoprime( eval(s)), print1(s", "))) \\ Jens Kruse Andersen, Jun 26 2014
-
from sympy import isprime, nextprime
def afind(terms, verbose=False):
n, p, pstr = 0, 2, "2"
while n < terms:
if isprime(int(pstr)): n += 1; print(n, int(pstr))
p = nextprime(p); pstr += str(p)
afind(5) # Michael S. Branicky, Feb 23 2021
Entry revised Jan 18 2004
A100003
Prime numbers p such that the concatenation of all odd primes up through p in decreasing order is prime.
Original entry on oeis.org
3, 5, 17, 89, 383, 8831
Offset: 1
17 is in the sequence because 17.13.11.7.5.3 is prime (dot between numbers means concatenation).
-
Do[If[PrimeQ[(v={};Do[v=Join[v, IntegerDigits[Prime[n-j+1]]], {j, n-1}];FromDigits[v])], Print[Prime[n]]], {n, 2, 4413}]
Prime[#]&/@Select[Range[100],PrimeQ[FromDigits[Flatten[IntegerDigits/@ Prime[Range[#,2,-1]]]]]&] (* To generate a(6) increase the Range by 1000, but the program will run a long time. *) (* Harvey P. Dale, Nov 27 2015 *)
A099070
Numbers k such that the concatenation of all nonprime natural numbers up to k with decreasing order is prime.
Original entry on oeis.org
4, 5, 6, 7, 8, 9, 26, 1752, 1753
Offset: 1
9 is in the sequence because all nonprime natural numbers up to 9 are 1,4,6,8 & 9 and 98641 is prime.
-
Do[If[PrimeQ[(v={};Do[If[ !PrimeQ[n+1-j], v=Join[v, IntegerDigits [n+1-j]]], {j, n}];FromDigits[v])], Print[n]], {n, 5450}]
A099071
Composite numbers k such that the concatenation of all nonprime positive integers up to k in decreasing order is prime.
Original entry on oeis.org
4, 6, 8, 9, 26, 1752
Offset: 1
26 is a term: 26 is composite; nonprimes up to 26 are 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26; and 26252422212018161514121098641 is prime.
-
Do[If[ !PrimeQ[n]&&PrimeQ[(v={};Do[If[ !PrimeQ[n+1-j], v=Join[v, IntegerDigits[n+1-j]]], {j, n}];FromDigits[v])], Print[n]], {n, 6013}]
cnpQ[n_]:=PrimeQ[FromDigits[Flatten[IntegerDigits/@Select[Range[n,1,-1],!PrimeQ[#]&]]]]; Select[Range[1800],!PrimeQ[#]&&cnpQ[#]&] (* Harvey P. Dale, Jul 19 2020 *)
Showing 1-6 of 6 results.
Comments