cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069178 Centered 21-gonal numbers.

Original entry on oeis.org

1, 22, 64, 127, 211, 316, 442, 589, 757, 946, 1156, 1387, 1639, 1912, 2206, 2521, 2857, 3214, 3592, 3991, 4411, 4852, 5314, 5797, 6301, 6826, 7372, 7939, 8527, 9136, 9766, 10417, 11089, 11782, 12496, 13231, 13987, 14764, 15562, 16381, 17221, 18082, 18964
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 09 2002

Keywords

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = (21n^2 - 21n + 2)/2
a(n) = 21*n + a(n-1) - 21 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f. -x*(1+19*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
Binomial transform of [1, 21, 21, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 21, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
a(n) = 1 + Sum_{i=1..n} 21*(i-1). - Wesley Ivan Hurt, May 25 2013
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(13/21)*Pi/2)/sqrt(273).
Sum_{n>=1} a(n)/n! = 23*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 23/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 21*x^2/2)-1. - Nikolaos Pantelidis, Feb 06 2023