cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069184 Sum of divisors d of n such that d or n/d is odd.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 13, 18, 12, 20, 14, 24, 24, 17, 18, 39, 20, 30, 32, 36, 24, 36, 31, 42, 40, 40, 30, 72, 32, 33, 48, 54, 48, 65, 38, 60, 56, 54, 42, 96, 44, 60, 78, 72, 48, 68, 57, 93, 72, 70, 54, 120, 72, 72, 80, 90, 60, 120, 62, 96, 104, 65, 84, 144, 68, 90, 96
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2002

Keywords

Comments

Might be called UnitaryOrdinarySigma(n): If n=Product p_i^r_i then UOSigma(n)=UnitarySigma(2^r_1)*Sigma(n/2^r_1)=(2^r_1+1)*Product (p_i^(r_i+1)-1)/(p_i-1), p_i is not 2. - Yasutoshi Kohmoto, Jun 11 2005

Examples

			UOSigma(2^4*7^2) = UnitarySigma(2^4)*sigma(7^2) = 17*57 = 969.
		

Crossrefs

Programs

  • Maple
    A069184 := proc(n) local a,f,p,e; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; if p = 2 then a := a*(2^e+1) ; else a := a*(p^(e+1)-1)/(p-1) ; end if; end do; a ; end proc: # R. J. Mathar, Jun 02 2011
  • Mathematica
    Table[ Sum[ d*Boole[ OddQ[d] || OddQ[n/d] ], {d, Divisors[n]}], {n, 1, 69}] (* Jean-François Alcover, Mar 26 2013 *)
    f[2, e_] := 2^e+1; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 2) || ((n/d) % 2))); \\ Michel Marcus, Apr 10 2014
    
  • PARI
    a(n)=my(e=valuation(n,2)); sigma(n>>e) * if(e,2^e+1,1) \\ Charles R Greathouse IV, Apr 10 2014

Formula

Multiplicative with a(2^e) = 2^e+1 and a(p^e) = (p^(e+1)-1)/(p-1) for an odd prime p.
G.f.: Sum_{m>0} m*x^m*(1+x^m+x^(2*m)-x^(3*m))/(1-x^(4*m)).
Dirichlet g.f.: zeta(s) *zeta(s-1) *(1-2^(1-2s)). - R. J. Mathar, Jun 02 2011 [simplified by Michael Shamos, May 14 2025]
Sum_{k=1..n} a(k) ~ 7*Pi^2*n^2 / 96. - Vaclav Kotesovec, Feb 08 2019

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar