cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A092356 UO-sigma multiperfect numbers: n such that A069184(n)/n is an integer.

Original entry on oeis.org

1, 6, 60, 1080, 6552, 36720, 47520, 87360, 222768, 288288, 8173440, 49585536, 203558400, 683289600, 920387520, 4201148160, 25486965504, 556121548800, 1610457666048, 3633511924224, 4399770343643136, 6075071799091200, 9926754576979968, 27220195859304960, 66800080530869760, 629720915643477504
Offset: 1

Views

Author

Yasutoshi Kohmoto, Mar 20 2004

Keywords

Comments

The UO-sigma function is defined by UO-sigma(n) = A069184(n).
E.g., UO-sigma(2^4*7^2) = UnitarySigma(2^4)*sigma(7^2) = 17*57 = 969. So UO-sigma(n) = UnitarySigma(n) if n=2^r, or = sigma(n) if GCD(2,n)=1.
A UO-sigma perfect number satisfies UO-sigma(n) = k*n for some k.
The initial values of k are 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. However, I conjecture that every positive integer >= 2 must appear.
Some interesting subsequences exist: s(n) := {a(1), a(4), a(9), a(11), ...} has the property that s(n-1)|s(n): 2*3, 2^3*3^2*7*13, 2^5*3^2*7*13*11, 2^7*3^2*7*11*13*43, 2^8*3^2*7*11*13*43*257, ...

Examples

			Sequence begins: 2*3, 2^2*3*5, 2^3*3^3*5, 2^3*3^2*7*13, 2^4*3^3*5*17, 2^5*3^3*5*11, 2^6*3*5*7*13, 2^4*3^2*7*13*17, 2^5*3^2*7*13*11, 2^7*3^3*5*11*43, 2^7*3^2*7*11*13*43, ...
		

Crossrefs

Cf. A091321.

Programs

  • PARI
    is(n)=my(e=valuation(n, 2)); (sigma(n>>e) * if(e, 2^e+1, 1)) % n == 0 \\ Charles R Greathouse IV, Apr 10 2014

Extensions

Corrected by Andrew Lelechenko, Apr 10 2014

A069733 Number of divisors d of n such that d or n/d is odd. Number of non-orientable coverings of the Klein bottle with n lists.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 3, 4, 2, 4, 2, 4, 4, 2, 2, 6, 2, 4, 4, 4, 2, 4, 3, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 6, 2, 4, 4, 4, 2, 8, 2, 4, 6, 4, 2, 4, 3, 6, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 2, 4, 6, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 6, 4, 4, 8, 2, 4, 5, 4, 2, 8, 4, 4, 4, 4, 2, 12, 4, 4, 4, 4, 4, 4, 2, 6, 6, 6, 2, 8, 2, 4
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of divisors of n that are not divisible by 4. - Vladeta Jovovic, Dec 16 2002

Crossrefs

Programs

Formula

Multiplicative with a(2^e)=2 and a(p^e)=e+1 for e>0 and an odd prime p.
a(n) = d(n)-d(n/4) for 4|n and =d(n) otherwise where d(n) is the number of divisors of n (A000005).
G.f.: Sum_{m>0} x^m*(1+x^m+x^(2*m))/(1-x^(4*m)). - Vladeta Jovovic, Oct 21 2002
From Amiram Eldar, Dec 05 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 - 1/4^s).
Sum_{k=1..n} a(k) ~ (3 * n * log(n) + (6*gamma + 2*log(2) - 3)*n)/4, where gamma is Euler's constant (A001620). [Corrected by Andrey Zabolotskiy, Apr 20 2025] (End)
a(n) = A000005(A259445(n)). - David A. Corneth, Aug 28 2023

A107749 OrdinaryUnitarySigma(n): If n = Product p_i^r_i then OUSigma(n) = Sigma(2^r_1)*UnitarySigma(n/2^r_1).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 10, 18, 12, 28, 14, 24, 24, 31, 18, 30, 20, 42, 32, 36, 24, 60, 26, 42, 28, 56, 30, 72, 32, 63, 48, 54, 48, 70, 38, 60, 56, 90, 42, 96, 44, 84, 60, 72, 48, 124, 50, 78, 72, 98, 54, 84, 72, 120, 80, 90, 60, 168, 62, 96, 80, 127, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jun 11 2005, Feb 24 2007

Keywords

Comments

The sum of divisors d of n such that gcd(d, n/d) is a power of 2 (A000079). - Amiram Eldar, Aug 26 2023

Examples

			OUSigma(2^4*7^2) = Sigma(2^4)*UnitarySigma(7^2) = 31*50 = 1550.
		

Crossrefs

Programs

  • Maple
    A107749 := proc(n) local a,f,p,e; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; if p = 2 then a := a*(2^(e+1)-1) ; else a := a*(p^e+1) ; end if; end do; a ; end proc: # R. J. Mathar, Jun 02 2011
  • Mathematica
    f[2, e_] := 2^(e+1)-1; f[p_, e_] := p^e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],if(fm[k,1]==2,2^(fm[k,2]+1)-1,fm[k,1]^fm[k,2]+1))

Formula

a(n) = A000203(p2) * A034448(n/p2), where p2 = A006519(n). - R. J. Mathar, Jun 15 2008
Multiplicative with a(2^e) = 2^(e+1)-1, a(p^e) = p^e+1 for p>2, e>0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/7) * zeta(2)/zeta(3) = (4/7) * A306633 = 0.781961... . - Amiram Eldar, Nov 01 2022
Dirichlet g.f.: (4^s/(4^s-2)) * zeta(s)*zeta(s-1)/zeta(2*s-1). - Amiram Eldar, Aug 26 2023

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
More terms from R. J. Mathar, Jun 15 2008
Name corrected by Franklin T. Adams-Watters, Aug 24 2013

A365211 The sum of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 31, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 57, 93, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034448 at n = 25.
The number of these divisors is A365210(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 1 + p^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 1 + f[i,1]^f[i,2], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)));}

Formula

Multiplicative with a(p^e) = 1 + p^e for p = 2 and 3, and a(p^e) = (p^(e+1)-1)/(p-1) for a prime p >= 5.
a(n) <= A000203(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034448(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000203(A065330(n)) * A034448(A065331(n)).
Dirichlet g.f.: (1 - 1/2^(2*s-1)) * (1 - 1/3^(2*s-1)) * zeta(s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 91*Pi^2/1296 = 0.69300463... .

A076598 Sum of squares of divisors d of n such that d or n/d is odd.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 50, 65, 91, 130, 122, 170, 170, 250, 260, 257, 290, 455, 362, 442, 500, 610, 530, 650, 651, 850, 820, 850, 842, 1300, 962, 1025, 1220, 1450, 1300, 1547, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 2074, 2366, 2650, 2210, 2570, 2451, 3255
Offset: 1

Views

Author

Vladeta Jovovic, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 4^e+1 ; f[p_, e_] := (p^(2*e+2)-1)/(p^2-1) ; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Aug 01 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d % 2) || (n/d % 2), d^2)); \\ Michel Marcus, Oct 30 2022

Formula

Multiplicative with a(2^e) = 4^e+1, a(p^e) = (p^(2*e+2)-1)/(p^2-1) for an odd prime p.
G.f.: Sum_{m>0} m^2*x^m*(1+2*x^m+3*x^(2*m))/(1+x^(2*m))/(1+x^m).
More generally, if b(n, k) is sum of k-th powers of divisors d of n such that d or n/d is odd then b(n, k) = sigma_k(n)-2^k*sigma_k(n/4) if n mod 4=0, otherwise b(n, k) = sigma_k(n).
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1+x^m+x^(2*m)-(2^k-1)*x^(3*m))/(1-x^(4*m)). b(n, k) is multiplicative and b(2^e, k) = 2^(k*e)+1, b(p^e, k) = (p^(k*e+k)-1)/(p^k-1) for an odd prime p.
a(n) = sigma_2(n)-4*sigma_2(n/4) if n mod 4=0, otherwise a(n) = sigma_2(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 5*zeta(3)/16 = 0.375642... . - Amiram Eldar, Oct 30 2022
Showing 1-5 of 5 results.