cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069193 a(n) = Sum_{d|n} d*phi(n)/phi(d).

Original entry on oeis.org

1, 3, 5, 10, 9, 15, 13, 28, 24, 27, 21, 50, 25, 39, 45, 72, 33, 72, 37, 90, 65, 63, 45, 140, 70, 75, 99, 130, 57, 135, 61, 176, 105, 99, 117, 240, 73, 111, 125, 252, 81, 195, 85, 210, 216, 135, 93, 360, 140, 210, 165, 250, 105, 297, 189, 364, 185, 171, 117, 450
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2002

Keywords

Crossrefs

Cf. A000010.

Programs

  • Magma
    [&+[d*EulerPhi(n) div EulerPhi(d):d in Divisors(n)]:n in [1..60]]; // Marius A. Burtea, Sep 15 2019
  • Maple
    with(numtheory):for n from 1 to 200 do di := sort(convert(divisors(n),list)): a[n] := sum(di[i]*phi(n)/phi(di[i]),i=1..nops(di)):od:seq(a[k],k=1..200);
  • Mathematica
    f[p_, e_] := ((e+1)*p - 1) * p^(e-1) ; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*eulerphi(n)/eulerphi(d)); \\ Michel Marcus, Sep 15 2019
    

Formula

Multiplicative with a(p^e) = ((e+1)*p - 1) * p^(e-1). - Amiram Eldar, Sep 15 2019
a(n) = Sum_{k=1..n, gcd(n,k) = 1} sigma(gcd(n,k-1)). - Ilya Gutkovskiy, Sep 24 2021
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1)). - Amiram Eldar, Sep 21 2023

Extensions

More terms from Sascha Kurz, Feb 02 2003