cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069194 a(n) = Sum_{d|n} (n/d)*phi(n)/phi(d).

Original entry on oeis.org

1, 3, 7, 13, 21, 21, 43, 53, 64, 63, 111, 91, 157, 129, 147, 213, 273, 192, 343, 273, 301, 333, 507, 371, 526, 471, 577, 559, 813, 441, 931, 853, 777, 819, 903, 832, 1333, 1029, 1099, 1113, 1641, 903, 1807, 1443, 1344, 1521, 2163, 1491, 2108, 1578, 1911, 2041
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2002

Keywords

Crossrefs

Programs

  • Magma
    [&+[(n div d)*EulerPhi(n) div EulerPhi(d):d in Divisors(n)]:n in [1..52]]; // Marius A. Burtea, Sep 15 2019
    
  • Maple
    for i from 1 to 100 do d := divisors(i): a[i] := i*phi(i)*sum(1/d[j]/phi(d[j]),j=1..nops(d)) od:seq(a[j],j=1..100);
  • Mathematica
    f[p_, e_] := p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1) ; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
  • PARI
    a(n) = sumdiv(n, d, n/d*eulerphi(n)/eulerphi(d)); \\ Michel Marcus, Sep 15 2019

Formula

Multiplicative with a(p^e) = p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1). - Amiram Eldar, Sep 15 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 + 1/p^5) = 0.2550149528... . - Amiram Eldar, Oct 28 2022

Extensions

More terms from Sascha Kurz, Jan 03 2003