A069201 a(n) = Sum_{k=1..n} mu(k)^2 * 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k.
1, 3, 5, 5, 7, 11, 13, 13, 13, 17, 19, 19, 21, 25, 29, 29, 31, 31, 33, 33, 37, 41, 43, 43, 43, 47, 47, 47, 49, 57, 59, 59, 63, 67, 71, 71, 73, 77, 81, 81, 83, 91, 93, 93, 93, 97, 99, 99, 99, 99, 103, 103, 105, 105, 109, 109, 113, 117, 119, 119, 121, 125, 125, 125, 129, 137
Offset: 1
References
- G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms)
Programs
-
Magma
[&+[MoebiusMu(k)^2*#Divisors(k):k in [1..n]]: n in [1..66]]; // Marius A. Burtea, Jul 27 2019
-
Maple
with(numtheory): seq(add(tau(k)*mobius(k)^2, k=1..n), n=1..90); # Ridouane Oudra, Jul 25 2019
-
Mathematica
Accumulate @ Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 66}] (* Amiram Eldar, May 24 2020 *)
-
PARI
a(n) = sum(k=1, n, moebius(k)^2*2^omega(k)); \\ Michel Marcus, Jul 23 2017
-
Scheme
(define (A069201 n) (if (= 1 n) n (+ (A074823 n) (A069201 (- n 1))))) ;; Antti Karttunen, Jul 23 2017
Formula
Asymptotic formula: a(n) = C*n*log(n) + O(n) with C = Product_{p prime} (1 - 1/p)^2*(1 + 2/p).
The constant C is A065473. - Amiram Eldar, May 24 2020
a(n) = Sum_{k=1..n} mu(k)^2*d(k), where d is the number of divisors function (A000005). - Ridouane Oudra, Jul 25 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then a(n) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = A065473, f'(1) = f(1) * Sum_{primes p} 6*log(p)/(p^2 + p - 2) = 0.802323384763097462846799913287578352653695442033314074501634920897596526... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 20 2021