cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069201 a(n) = Sum_{k=1..n} mu(k)^2 * 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k.

Original entry on oeis.org

1, 3, 5, 5, 7, 11, 13, 13, 13, 17, 19, 19, 21, 25, 29, 29, 31, 31, 33, 33, 37, 41, 43, 43, 43, 47, 47, 47, 49, 57, 59, 59, 63, 67, 71, 71, 73, 77, 81, 81, 83, 91, 93, 93, 93, 97, 99, 99, 99, 99, 103, 103, 105, 105, 109, 109, 113, 117, 119, 119, 121, 125, 125, 125, 129, 137
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.

Crossrefs

Partial sums of A074823.

Programs

  • Magma
    [&+[MoebiusMu(k)^2*#Divisors(k):k in [1..n]]: n in [1..66]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    with(numtheory): seq(add(tau(k)*mobius(k)^2, k=1..n), n=1..90); # Ridouane Oudra, Jul 25 2019
  • Mathematica
    Accumulate @ Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 66}] (* Amiram Eldar, May 24 2020 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)^2*2^omega(k)); \\ Michel Marcus, Jul 23 2017
    
  • Scheme
    (define (A069201 n) (if (= 1 n) n (+ (A074823 n) (A069201 (- n 1))))) ;; Antti Karttunen, Jul 23 2017
    

Formula

Asymptotic formula: a(n) = C*n*log(n) + O(n) with C = Product_{p prime} (1 - 1/p)^2*(1 + 2/p).
The constant C is A065473. - Amiram Eldar, May 24 2020
a(n) = Sum_{k=1..n} mu(k)^2*d(k), where d is the number of divisors function (A000005). - Ridouane Oudra, Jul 25 2019
More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then a(n) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = A065473, f'(1) = f(1) * Sum_{primes p} 6*log(p)/(p^2 + p - 2) = 0.802323384763097462846799913287578352653695442033314074501634920897596526... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 20 2021