cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069205 a(n) = Sum_{k=1..n} 2^bigomega(k).

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 25, 29, 33, 35, 43, 45, 49, 53, 69, 71, 79, 81, 89, 93, 97, 99, 115, 119, 123, 131, 139, 141, 149, 151, 183, 187, 191, 195, 211, 213, 217, 221, 237, 239, 247, 249, 257, 265, 269, 271, 303, 307, 315, 319, 327, 329, 345, 349, 365, 369, 373
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

Partial sums of A061142. - Michel Marcus, Aug 08 2017

References

  • G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 53, exercise 5 (in the third edition 2015, p. 59, exercise 57).

Crossrefs

Programs

  • Mathematica
    Accumulate[2^PrimeOmega[Range[60]]] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    a(n) = sum(k=1, n, 2^bigomega(k)); \\ Michel Marcus, Aug 08 2017

Formula

Asymptotic formula: a(n) = 1/(8*log(2))*C*n*log(n)^2+O(n*log(n)) with C = A167864 = Product_{p primes > 2} (1+1/p/(p-2)) where the product is over all the primes p>2.
From Daniel Suteu, May 23 2020: (Start)
a(n) = Sum_{k=1..n} 2^(bigomega(k) - omega(k)) * floor(n/k).
a(n) = Sum_{k=1..n} A335073(floor(n/k)).
a(n) = 1 + Sum_{k=1..floor(log_2(n))} 2^k * pi_k(n), where pi_k(n) is the number of k-almost primes <= n. (End)
More precise asymptotics [Grosswald, 1956]: a(n) ~ A167864*n*log(n)*(log(n) - 2 - 4*A347195 + 4*gamma + 5*log(2))/(8*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 22 2021
Even more precise formula: a(n) ~ A167864 * n / (8*log(2)) * (log(n)^2 + (4*g + 5*log(2) - 2 - 4*A347195)*log(n) + 2 + 2*g^2 - 4*sg1 - 5*log(2) + 13*log(2)^2/6 + 2*g*(5*log(2) - 2) - 2*A347195*(5*log(2) - 2 + 4*g) + 4*A347195^2 + c), where c = Sum_{prime p > 2} (2*p * (2*p-3)* log(p)^2) / ((p-2)^2 * (p-1)^2) = 8.86809160013722347937514407919207620377461987744681170588044228288988578547..., g is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 11 2022