cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009262 a(n) = lcm(n, phi(n)).

Original entry on oeis.org

1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 120, 16, 272, 18, 342, 40, 84, 110, 506, 24, 100, 156, 54, 84, 812, 120, 930, 32, 660, 272, 840, 36, 1332, 342, 312, 80, 1640, 84, 1806, 220, 360, 506, 2162, 48, 294, 100, 1632, 312, 2756, 54, 440, 168, 684, 812, 3422
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence: if n divides m, a(n) divides a(m). - Franklin T. Adams-Watters, Mar 30 2010
a(n) = n iff n is in A007694.
a(n) is a divisor of A299822(n). It is a proper divisor iff n is in A069209. - Max Alekseyev, Oct 11 2024

Crossrefs

Programs

Formula

a(n) = A000010(n) * A109395(n) = n * A076512(n) = A299822(n) / gcd(A007947(n),phi(A007947(n))). - Max Alekseyev, Oct 11 2024

A247371 Number of groups of order n for which all Sylow subgroups are cyclic.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 1, 4, 1, 3, 1, 4, 1, 2, 1, 2, 1, 2, 1, 6, 1, 3, 1, 2, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Eric M. Schmidt, Sep 15 2014

Keywords

Comments

For squarefree n this gives the total number of groups of order n.

Crossrefs

Programs

  • Sage
    def pnu(pp, m) : return prod(gcd(pp, q-1) for q in prime_divisors(m))
    def a(n) : s = n.radical(); return sum(prod(sum((pnu(p^(k+1), s//prod(c)) - pnu(p^k, s//prod(c))) // (p^k*(p-1)) for k in range(n.valuation(p))) for p in c) for c in powerset(prime_divisors(n)))

Formula

a(A005117(n)) = A000001(A005117(n)). - Michel Marcus, Sep 15 2014

A295126 Denominator of Sum_{d|n} mu(n/d)/d, where mu is the Möbius function A008683.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 6, 13, 7, 15, 16, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 18, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 24, 49, 25, 51, 13, 53, 27, 11, 28, 19, 29, 59, 15, 61, 31, 21, 64, 65, 33, 67, 17, 69, 35
Offset: 1

Views

Author

Mats Granvik and Robert G. Wilson v, Nov 15 2017

Keywords

Comments

a(n) <= n.
a(n) <> n when n is in A069209.
n == 0 (mod a(n)).
First occurrence of k: 1, 2, 3, 4, 5, 12, 7, 8, 9, 40, 11, 24, 13, 28, 15, 16, 17, 36, 19, 80, 63, 44, 23, 48, 25, ..., ;
First occurrence of k = a(n)/n: 1, 6, 21, 20, 55, 42, 203, 120, 171, 110, 253, 84, 689, 406, 465, 272, 1751, 342, ..., .

Examples

			a(6) = 1 since mu(6)/1 + mu(3)/2 + mu(2)/3 + mu(1)/6 = 1 - 1/2 - 1/3 + 1/6 = 1/3.
		

Crossrefs

Programs

  • Maple
    f:= n -> denom(add(numtheory:-mobius(n/k)/k, k=numtheory:-divisors(n))):
    map(f, [$1..100]); # Robert Israel, Nov 16 2017
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[d]/Reverse@ d)]; Denominator@ Array[f, 70]
    f[p_, e_] := -(p-1)/p^e; a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, moebius(n/d)/d)); \\ Michel Marcus, Nov 17 2017
Showing 1-3 of 3 results.