cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069272 11-almost primes (generalization of semiprimes).

Original entry on oeis.org

2048, 3072, 4608, 5120, 6912, 7168, 7680, 10368, 10752, 11264, 11520, 12800, 13312, 15552, 16128, 16896, 17280, 17408, 17920, 19200, 19456, 19968, 23328, 23552, 24192, 25088, 25344, 25920, 26112, 26880, 28160, 28800, 29184, 29696
Offset: 1

Views

Author

Rick L. Shepherd, Mar 12 2002

Keywords

Comments

Product of 11 not necessarily distinct primes.
Divisible by exactly 11 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), this sequence (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[9000], Plus @@ Last /@ FactorInteger[ # ] == 11 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[30000],PrimeOmega[#]==11&] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    k=11; start=2^k; finish=30000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • PARI
    is(n)=bigomega(n)==11 \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069272(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 11)))
        return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 11.
a(n) ~ 3628800n log n / (log log n)^10. - Charles R Greathouse IV, May 06 2013