A069273 12-almost primes (generalization of semiprimes).
4096, 6144, 9216, 10240, 13824, 14336, 15360, 20736, 21504, 22528, 23040, 25600, 26624, 31104, 32256, 33792, 34560, 34816, 35840, 38400, 38912, 39936, 46656, 47104, 48384, 50176, 50688, 51840, 52224, 53760, 56320, 57600, 58368, 59392
Offset: 1
Keywords
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), this sequence (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Programs
-
Mathematica
Select[Range[20000], Plus @@ Last /@ FactorInteger[ # ] == 12 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *) Select[Range[60000],PrimeOmega[#]==12&] (* Harvey P. Dale, May 01 2019 *)
-
PARI
k=12; start=2^k; finish=70000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A069273(n): def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 12))) return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024
Formula
Product p_i^e_i with Sum e_i = 12.
Comments