cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069277 16-almost primes (generalization of semiprimes).

Original entry on oeis.org

65536, 98304, 147456, 163840, 221184, 229376, 245760, 331776, 344064, 360448, 368640, 409600, 425984, 497664, 516096, 540672, 552960, 557056, 573440, 614400, 622592, 638976, 746496, 753664, 774144, 802816, 811008, 829440, 835584, 860160
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 16 not necessarily distinct primes.
Divisible by exactly 16 prime powers (not including 1).
Any 16-almost prime can be represented in several ways as a product of two 8-almost primes A046310; in several ways as a product of four 4-almost primes A014613; and in several ways as a product of eight semiprimes A001358. - Jonathan Vos Post, Dec 12 2004

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), this sequence (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[300000], Plus @@ Last /@ FactorInteger[ # ] == 16 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[10^6],PrimeOmega[#]==16&] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    k=16; start=2^k; finish=1000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A069277(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,16)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

Product p_i^e_i with Sum e_i = 16.