A069289 Sum of odd divisors of n <= sqrt(n).
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 8, 6, 4, 1, 1, 4, 6, 8, 4, 1, 1, 9, 1, 1, 11, 1, 6, 4, 1, 1, 4, 13, 1, 4, 1, 1, 9, 1, 8, 4, 1, 6, 13, 1, 1, 11, 6, 1, 4, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a069289 n = sum $ takeWhile (<= a000196 n) $ a182469_row n -- Reinhard Zumkeller, Apr 05 2015
-
Mathematica
Table[Total[Select[Divisors[n],OddQ[#]&<=Sqrt[n]&]],{n,120}] (* Harvey P. Dale, Jul 16 2017 *)
-
PARI
a(n) = my(ir = sqrtint(n)); sumdiv(n, d, (d % 2) * (d <= ir) * d); \\ Michel Marcus, Jan 14 2014
Formula
G.f.: Sum_{k>=1} (2*k - 1) * x^((2*k - 1)^2) / (1 - x^(2*k - 1)). - Ilya Gutkovskiy, Apr 04 2020
Comments