cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069289 Sum of odd divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 8, 6, 4, 1, 1, 4, 6, 8, 4, 1, 1, 9, 1, 1, 11, 1, 6, 4, 1, 1, 4, 13, 1, 4, 1, 1, 9, 1, 8, 4, 1, 6, 13, 1, 1, 11, 6, 1, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(n) = Sum{d : d = A182469(n,k), d <= A000196(n), k=1..A001227(n)}. - Reinhard Zumkeller, Apr 05 2015

Crossrefs

Programs

  • Haskell
    a069289 n = sum $ takeWhile (<= a000196 n) $ a182469_row n
    -- Reinhard Zumkeller, Apr 05 2015
  • Mathematica
    Table[Total[Select[Divisors[n],OddQ[#]&&#<=Sqrt[n]&]],{n,120}] (* Harvey P. Dale, Jul 16 2017 *)
  • PARI
    a(n) = my(ir = sqrtint(n)); sumdiv(n, d, (d % 2) * (d <= ir) * d); \\ Michel Marcus, Jan 14 2014
    

Formula

G.f.: Sum_{k>=1} (2*k - 1) * x^((2*k - 1)^2) / (1 - x^(2*k - 1)). - Ilya Gutkovskiy, Apr 04 2020