cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 63 results. Next

A329029 a(n) = A069359(A276086(n)), where A276086 is the primorial base exp-function and A069359(n) = n * Sum_{p|n} 1/p.

Original entry on oeis.org

0, 1, 1, 5, 3, 15, 1, 7, 8, 31, 24, 93, 5, 35, 40, 155, 120, 465, 25, 175, 200, 775, 600, 2325, 125, 875, 1000, 3875, 3000, 11625, 1, 9, 10, 41, 30, 123, 12, 59, 71, 247, 213, 741, 60, 295, 355, 1235, 1065, 3705, 300, 1475, 1775, 6175, 5325, 18525, 1500, 7375, 8875, 30875, 26625, 92625, 7, 63, 70, 287, 210, 861, 84, 413, 497, 1729
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Comments

A380535 gives the indices n where a(n) is a multiple of A053669(n). This can be seen from the formula a(n) = A003557(A276086(n)) * A069359(A328571(n)). The left hand side of the product is a multiple of A053669(n) if and only if A276088(n) > 1, while the right hand side is never a multiple of A053669(n), as it is equal to A329031(n) = A003415(A007947(A276086(n))). - Antti Karttunen, Feb 11 2025

Crossrefs

Coincides with A327860 on the positions given by A276156.

Programs

  • PARI
    A329029(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p)); n = n\p; p = nextprime(1+p)); (s*m); };
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d));
    A329029(n) = A069359(A276086(n));

Formula

a(n) = A069359(A276086(n)).
a(n) = A328572(n) * A329031(n) = A003557(A276086(n)) * A069359(A328571(n)). - Antti Karttunen, Feb 11 2025

A347956 Dirichlet convolution of A003602 with A069359.

Original entry on oeis.org

0, 1, 1, 3, 1, 8, 1, 7, 5, 11, 1, 22, 1, 14, 13, 15, 1, 35, 1, 31, 16, 20, 1, 50, 8, 23, 20, 40, 1, 81, 1, 31, 22, 29, 19, 95, 1, 32, 25, 71, 1, 106, 1, 58, 62, 38, 1, 106, 11, 77, 31, 67, 1, 134, 25, 92, 34, 47, 1, 217, 1, 50, 78, 63, 28, 156, 1, 85, 40, 151, 1, 215, 1, 59, 95, 94, 28, 181, 1, 151, 74, 65, 1, 286, 34
Offset: 1

Views

Author

Antti Karttunen, Sep 20 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A003602(d) * A069359(n/d).

A340070 a(n) = gcd(A003415(n), A069359(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 2, 1, 9, 8, 8, 1, 3, 1, 2, 10, 13, 1, 4, 5, 15, 9, 2, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 4, 1, 41, 1, 2, 3, 25, 1, 8, 7, 5, 20, 2, 1, 9, 16, 4, 22, 31, 1, 2, 1, 33, 3, 32, 18, 61, 1, 2, 26, 59, 1, 12, 1, 39, 5, 2, 18, 71, 1, 8, 27, 43, 1, 2, 22, 45, 32, 4, 1, 3, 20, 2, 34, 49, 24
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A003415(n), A069359(n)) = gcd(A003415(n), A329039(n)).
For all squarefree k, a(k) = A003415(k) = A069359(k).

A347133 a(n) = Sum_{d|n} A003415(n/d) * A069359(d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 6, 1, 2, 0, 16, 0, 2, 2, 24, 0, 19, 0, 20, 2, 2, 0, 72, 1, 2, 9, 24, 0, 40, 0, 80, 2, 2, 2, 111, 0, 2, 2, 96, 0, 48, 0, 32, 25, 2, 0, 256, 1, 29, 2, 36, 0, 117, 2, 120, 2, 2, 0, 244, 0, 2, 29, 240, 2, 64, 0, 44, 2, 56, 0, 446, 0, 2, 31, 48, 2, 72, 0, 352, 54, 2, 0, 308, 2, 2, 2, 168, 0, 304, 2, 56
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A003415 (arithmetic derivative) with A069359.
Dirichlet convolution of A001221 (omega, number of distinct prime factors of n) with A347131.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A003415(n/d) * A069359(d).
a(n) = Sum_{d|n} A001221(n/d) * A347131(d).

A347135 a(n) = Sum_{d|n} A001615(n/d) * A069359(d).

Original entry on oeis.org

0, 1, 1, 5, 1, 12, 1, 16, 7, 16, 1, 51, 1, 20, 18, 44, 1, 68, 1, 71, 22, 28, 1, 156, 11, 32, 33, 91, 1, 167, 1, 112, 30, 40, 26, 277, 1, 44, 34, 220, 1, 215, 1, 131, 110, 52, 1, 420, 15, 140, 42, 151, 1, 300, 34, 284, 46, 64, 1, 673, 1, 68, 138, 272, 38, 311, 1, 191, 54, 295, 1, 836, 1, 80, 162, 211, 38, 359, 1, 596
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A001615 (Dedekind psi function) with A069359.
Dirichlet convolution of A001221 (omega, number of distinct prime factors of n) with A322577.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,PrimeNu[n/#]*Sum[DirichletConvolve[j,MoebiusMu[j]^2,j,#/d] EulerPhi[d],{d,Divisors[#]}]&],{n,80}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
    A347135(n) = sumdiv(n,d,A001615(n/d)*A069359(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A069359(d).
a(n) = Sum_{d|n} A001221(n/d) * A322577(d).

A260310 Pairs with balanced sums of prime divisors (A008472) and inverse prime divisors (A069359), ordered by larger members.

Original entry on oeis.org

3, 8, 7, 16, 11, 18, 7, 27, 17, 45, 29, 50, 41, 54, 53, 60, 31, 64, 71, 84, 29, 99, 107, 132, 61, 147, 41, 153, 131, 162, 53, 207, 157, 220, 113, 225, 179, 228, 239, 240, 131, 242, 79, 243, 73, 245, 127, 255, 127, 256, 229, 264, 223, 280, 113, 297, 199, 315, 73, 325, 317, 336, 181, 338, 43, 343, 269, 348
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2015

Keywords

Comments

Consider pairs (x,y) of numbers where sum(p|x) p + sum(q|y) q = x*sum(p|x) 1/p + y*sum(q|y) 1/q where p, q are primes and sum(p|x) p > sum(q|y) q.
Or, pairs of numbers x and y where A008472(x) + A008472(y) = A069359(x) + A069359(y) where A008472(x) > A008472(y).
A001222(a(2n -1)) = 1 and A001222(a(2n)) >= 3.
For the vast majority of the time, a(2n-1) is prime. There seems to be about 1 pair per decade.
Conjecture: a(2n) < a(2n+2) for all n>0, but there are many times (1/10.84) that a(2n) + 1 = a(2n+2).
Conjecture: if a(2n-1) is prime then a(2n) is composite and vice versa. And when a(2n-1) is composite, it is congruent to 0 (mod 6). - Robert G. Wilson v, Jul 22 2015
The first conjecture appears to be satisfied because if both x and y were prime then the sum of the A008472 were the sum of the two primes and the sum of the A069359 were two. - R. J. Mathar, Aug 03 2015

Examples

			3 and 8 is first pair of this sequence because A008472(3) + A008472(8) = 3 + 2 = 5 is equal to A069359(3) + A069359(8) = 1 + 4 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{fi = FactorInteger[n][[All, 1]]}, {Plus @@ fi, n*Plus @@ (1/fi)}] /; n > 0; k =3; lst = {}; While[ k < 400, j = 2; While[ j < k, If[ f[k][[1]] + f[j][[1]] == f[k][[2]] + f[j][[2]] && f[k][[1]] != f[k][[2]], AppendTo[lst, {j,k}]]; j++]; k++]; lst // Flatten (* Robert G. Wilson v, Jul 22 2015 *)

Extensions

Corrected and edited by Robert G. Wilson v, Jul 22 2015

A344756 a(n) = A003415(n) / gcd(A003415(n), A069359(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 8, 1, 1, 1, 4, 1, 7, 1, 12, 1, 1, 1, 11, 2, 1, 3, 16, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 17, 1, 1, 1, 24, 13, 1, 1, 14, 2, 9, 1, 28, 1, 9, 1, 23, 1, 1, 1, 46, 1, 1, 17, 6, 1, 1, 1, 36, 1, 1, 1, 13, 1, 1, 11, 40, 1, 1, 1, 22, 4, 1, 1, 62, 1, 1, 1, 35, 1, 41, 1, 48, 1, 1, 1, 17, 1, 11, 25
Offset: 2

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Cf. A003415, A005117 (for n > 1 gives the positions of ones), A069359, A340070, A344757.
Cf. also A344696.

Programs

Formula

a(n) = A003415(n) / A340070(n) = A003415(n) / gcd(A003415(n), A069359(n)).

A347134 a(n) = Sum_{d|n} phi(n/d) * A069359(d), where phi is Euler totient function.

Original entry on oeis.org

0, 1, 1, 3, 1, 8, 1, 8, 5, 12, 1, 23, 1, 16, 14, 20, 1, 36, 1, 35, 18, 24, 1, 60, 9, 28, 21, 47, 1, 87, 1, 48, 26, 36, 22, 103, 1, 40, 30, 92, 1, 119, 1, 71, 66, 48, 1, 148, 13, 92, 38, 83, 1, 144, 30, 124, 42, 60, 1, 247, 1, 64, 86, 112, 34, 183, 1, 107, 50, 183, 1, 268, 1, 76, 110, 119, 34, 215, 1, 228, 81, 84
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A000010 (Euler totient function phi) with A069359.
Dirichlet convolution of A001221 (omega) with A029935 (the convolution square of Euler phi).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A000010(n/d) * A069359(d)
a(n) = Sum_{d|n} A001221(n/d) * A029935(d).
a(n) = Sum_{k=1..n} A069359(gcd(n,k)). - Antti Karttunen, Oct 17 2021

A344028 a(n) = A069359(A005940(1+n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 3, 4, 1, 7, 8, 10, 5, 15, 9, 8, 1, 9, 10, 14, 12, 31, 24, 20, 7, 35, 40, 30, 25, 45, 27, 16, 1, 13, 14, 18, 16, 41, 30, 28, 18, 59, 71, 62, 60, 93, 72, 40, 11, 63, 70, 70, 84, 155, 120, 60, 49, 175, 200, 90, 125, 135, 81, 32, 1, 15, 16, 26, 18, 61, 42, 36, 20, 87, 103, 82, 80, 123, 90, 56, 24, 113, 131
Offset: 0

Views

Author

Antti Karttunen, May 11 2021

Keywords

Comments

Coincides with A344026 on Fibbinary numbers, A003714.

Crossrefs

Cf. A000079 (positions of ones), A003714, A005940, A069359, A344026, A344182.

Programs

Formula

a(n) = A069359(A005940(1+n)).

A344757 a(n) = A069359(n) / gcd(A003415(n), A069359(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 13, 8, 1, 1, 5, 1, 7, 1, 15, 1, 5, 1, 9, 1, 1, 1, 31, 1, 1, 10, 1, 1, 1, 1, 19, 1, 1, 1, 5, 1, 1, 8, 21, 1, 1, 1, 7, 1, 1, 1, 41, 1, 1, 1, 13, 1, 31, 1, 25, 1, 1, 1, 5, 1, 9, 14, 1, 1, 1, 1, 15
Offset: 2

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A069359(n) / A340070(n) = A069359(n) / gcd(A003415(n), A069359(n)).
Showing 1-10 of 63 results. Next