cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A346469 a(n) = A340070(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 3, 3, 1, 7, 8, 31, 3, 3, 5, 5, 5, 5, 120, 15, 25, 25, 50, 25, 75, 75, 125, 125, 125, 125, 750, 375, 1, 9, 10, 41, 3, 3, 12, 59, 71, 247, 3, 3, 5, 5, 5, 5, 15, 15, 50, 25, 25, 25, 75, 75, 375, 125, 125, 125, 375, 375, 7, 7, 7, 7, 210, 21, 7, 7, 7, 7, 21, 21, 420, 35, 35, 35, 7455, 105, 175, 175, 175, 3325
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Programs

  • PARI
    A346469(n) = { my(s=0, t=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p); t += (e/p)); n = n\p; p = nextprime(1+p)); (gcd(s,t)*m); };

Formula

a(n) = A340070(A276086(n)) = gcd(A327860(n), A329029(n)).
For n >= 1, a(n) = A327860(n) / A345930(n).

A085731 Greatest common divisor of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 16, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 64, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Comments

a(n) = 1 iff n is squarefree (A005117), cf. A068328.
This sequence is very probably multiplicative. - Mitch Harris, Apr 19 2005

Crossrefs

Programs

  • Haskell
    a085731 n = gcd n $ a003415 n -- Reinhard Zumkeller, May 10 2011
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := GCD[n, d[n]]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Feb 21 2014 *)
    f[p_, e_] := p^If[Divisible[e, p], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if (f[i,2] % f[i,1], f[i,2]--);); factorback(f);} \\ Michel Marcus, Feb 14 2016

Formula

a(n) = GCD(n, A003415(n)).
Multiplicative with a(p^e) = p^e if p divides e; a(p^e) = p^(e-1) otherwise. - Eric M. Schmidt, Oct 22 2013
From Antti Karttunen, Feb 28 2021: (Start)
Thus a(A276086(n)) = A328572(n), by the above formula and the fact that A276086 is a permutation of A048103.
a(n) = n / A083346(n) = A190116(n) / A086130(n). (End)

A344695 a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.

Crossrefs

Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1,n],DivisorSum[n,MoebiusMu[n/#]^2*#&]],{n,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    (Python 3.8+)
    from math import prod, gcd
    from sympy import primefactors, divisor_sigma
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    def A344695(n): return gcd(A001615(n),divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).

A344756 a(n) = A003415(n) / gcd(A003415(n), A069359(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 8, 1, 1, 1, 4, 1, 7, 1, 12, 1, 1, 1, 11, 2, 1, 3, 16, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 17, 1, 1, 1, 24, 13, 1, 1, 14, 2, 9, 1, 28, 1, 9, 1, 23, 1, 1, 1, 46, 1, 1, 17, 6, 1, 1, 1, 36, 1, 1, 1, 13, 1, 1, 11, 40, 1, 1, 1, 22, 4, 1, 1, 62, 1, 1, 1, 35, 1, 41, 1, 48, 1, 1, 1, 17, 1, 11, 25
Offset: 2

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Cf. A003415, A005117 (for n > 1 gives the positions of ones), A069359, A340070, A344757.
Cf. also A344696.

Programs

Formula

a(n) = A003415(n) / A340070(n) = A003415(n) / gcd(A003415(n), A069359(n)).

A344757 a(n) = A069359(n) / gcd(A003415(n), A069359(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 13, 8, 1, 1, 5, 1, 7, 1, 15, 1, 5, 1, 9, 1, 1, 1, 31, 1, 1, 10, 1, 1, 1, 1, 19, 1, 1, 1, 5, 1, 1, 8, 21, 1, 1, 1, 7, 1, 1, 1, 41, 1, 1, 1, 13, 1, 31, 1, 25, 1, 1, 1, 5, 1, 9, 14, 1, 1, 1, 1, 15
Offset: 2

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A069359(n) / A340070(n) = A069359(n) / gcd(A003415(n), A069359(n)).
Showing 1-5 of 5 results.