A069361 Number of 3 X n binary arrays with a path of adjacent 1's from top row to bottom row.
1, 17, 197, 1985, 18621, 167337, 1461797, 12519345, 105683341, 882516857, 7308428597, 60131384705, 492202181661, 4012347269577, 32599584662597, 264152863210065, 2135714594033581, 17236446198921497, 138901692341235797, 1117982939085627425, 8989229069675479101
Offset: 1
Examples
The 17 binary arrays for n=2: 01 10 01 10 01 10 01 10 01 10 11 11 11 11 11 11 11 01 10 01 10 11 11 11 11 11 11 01 10 01 01 11 11 11 01 10 11 11 01 10 10 01 11 11 01 10 11 11 01 10 11 - _R. J. Mathar_, Jun 21 2023
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-58,16).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(-2 z - 1)/(16 z^3 - 58 z^2 + 15 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *)
-
PARI
x='x+O('x^30); Vec(x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1))) \\ G. C. Greubel, Apr 22 2018
Formula
G.f.: x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1)). - Vladeta Jovovic, Jul 02 2003
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 25 2008: (Start)
a(n) = 15*a(n-1) - 58*a(n-2) + 16*a(n-3), where a(1)=1, a(2)=17, a(3)=197;
a(n) = 8^n + 1/sqrt(41)*4^(n+1)*((7+sqrt(41))^(-(n+1)) - (7-sqrt(41))^(-(n+1))). (End)
a(n) = 8^n - A186446(n). - R. J. Mathar, Jan 27 2020