cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069361 Number of 3 X n binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1, 17, 197, 1985, 18621, 167337, 1461797, 12519345, 105683341, 882516857, 7308428597, 60131384705, 492202181661, 4012347269577, 32599584662597, 264152863210065, 2135714594033581, 17236446198921497, 138901692341235797, 1117982939085627425, 8989229069675479101
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Examples

			The 17 binary arrays for n=2:
01 10 01 10 01 10 01 10 01 10 11 11 11 11 11 11 11
01 10 01 10 11 11 11 11 11 11 01 10 01 01 11 11 11
01 10 11 11 01 10 10 01 11 11 01 10 11 11 01 10 11 - _R. J. Mathar_, Jun 21 2023
		

Crossrefs

Row 3 of A359576.
Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Mathematica
    CoefficientList[Series[(-2 z - 1)/(16 z^3 - 58 z^2 + 15 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1))) \\ G. C. Greubel, Apr 22 2018

Formula

G.f.: x*(1+2*x)/((1-8*x)*(2*x^2-7*x+1)). - Vladeta Jovovic, Jul 02 2003
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 25 2008: (Start)
a(n) = 15*a(n-1) - 58*a(n-2) + 16*a(n-3), where a(1)=1, a(2)=17, a(3)=197;
a(n) = 8^n + 1/sqrt(41)*4^(n+1)*((7+sqrt(41))^(-(n+1)) - (7-sqrt(41))^(-(n+1))). (End)
a(n) = 8^n - A186446(n). - R. J. Mathar, Jan 27 2020