cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069532 Smallest even number with digit sum n.

Original entry on oeis.org

10, 2, 12, 4, 14, 6, 16, 8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 198, 298, 398, 498, 598, 698, 798, 898, 998, 1998, 2998, 3998, 4998, 5998, 6998, 7998, 8998, 9998, 19998, 29998, 39998, 49998, 59998, 69998, 79998, 89998, 99998, 199998, 299998, 399998, 499998
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Cf. A000918 (smallest even number with bit sum n), A051885 (smallest number with digit sum n).
Cf. A077491.

Programs

  • Mathematica
    t={}; Do[i=2; While[Total[IntegerDigits[i]]!=n,i=i+2]; AppendTo[t,i],{n,48}]; t (* Jayanta Basu, May 18 2013 *)
  • PARI
    a(n) = {my(k = 2); while(sumdigits(k) != n, k+=2); k;} \\ Michel Marcus, Mar 18 2016

Formula

From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 17.
G.f.: 2*x*(45*x^16 - 45*x^15 + 45*x^14 - 45*x^13 + 45*x^12 - 45*x^11 + 45*x^10 - 45*x^9 + 5*x^8 - 4*x^7 + 5*x^6 - 4*x^5 + 5*x^4 - 4*x^3 + 5*x^2 - 4*x + 5)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 2 * A077491(n). - Alois P. Heinz, Sep 15 2020

Extensions

More terms from Ray Chandler, Jul 28 2003