cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000918 a(n) = 2^n - 2.

Original entry on oeis.org

-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 68719476734, 137438953470
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the expected number of tosses of a fair coin to get n-1 consecutive heads. - Pratik Poddar, Feb 04 2011
For n > 2, Sum_{k=1..a(n)} (-1)^binomial(n, k) = A064405(a(n)) + 1 = 0. - Benoit Cloitre, Oct 18 2002
For n > 0, the number of nonempty proper subsets of an n-element set. - Ross La Haye, Feb 07 2004
Numbers j such that abs( Sum_{k=0..j} (-1)^binomial(j, k)*binomial(j + k, j - k) ) = 1. - Benoit Cloitre, Jul 03 2004
For n > 2 this formula also counts edge-rooted forests in a cycle of length n. - Woong Kook (andrewk(AT)math.uri.edu), Sep 08 2004
For n >= 1, conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4, 5, 6 and 7 as a digit. - Alexandre Wajnberg, Apr 25 2005
Beginning with a(2) = 2, these are the partial sums of the subsequence of A000079 = 2^n beginning with A000079(1) = 2. Hence for n >= 2 a(n) is the smallest possible sum of exactly one prime, one semiprime, one triprime, ... and one product of exactly n-1 primes. A060389 (partial sums of the primorials, A002110, beginning with A002110(1)=2) is the analog when all the almost primes must also be squarefree. - Rick L. Shepherd, May 20 2005
From the second term on (n >= 1), the binary representation of these numbers is a 0 preceded by (n - 1) 1's. This pattern (0)111...1110 is the "opposite" of the binary 2^n+1: 1000...0001 (cf. A000051). - Alexandre Wajnberg, May 31 2005
The numbers 2^n - 2 (n >= 2) give the positions of 0's in A110146. Also numbers k such that k^(k + 1) = 0 mod (k + 2). - Zak Seidov, Feb 20 2006
Partial sums of A155559. - Zerinvary Lajos, Oct 03 2007
Number of surjections from an n-element set onto a two-element set, with n >= 2. - Mohamed Bouhamida, Dec 15 2007
It appears that these are the numbers n such that 3*A135013(n) = n*(n + 1), thus answering Problem 2 on the Mathematical Olympiad Foundation of Japan, Final Round Problems, Feb 11 1993 (see link Japanese Mathematical Olympiad).
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is a proper subset of y or y is a proper subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
The permutohedron Pi_n has 2^n - 2 facets [Pashkovich]. - Jonathan Vos Post, Dec 17 2009
First differences of A005803. - Reinhard Zumkeller, Oct 12 2011
For n >= 1, a(n + 1) is the smallest even number with bit sum n. Cf. A069532. - Jason Kimberley, Nov 01 2011
a(n) is the number of branches of a complete binary tree of n levels. - Denis Lorrain, Dec 16 2011
For n>=1, a(n) is the number of length-n words on alphabet {1,2,3} such that the gap(w)=1. For a word w the gap g(w) is the number of parts missing between the minimal and maximal elements of w. Generally for words on alphabet {1,2,...,m} with g(w)=g>0 the e.g.f. is Sum_{k=g+2..m} (m - k + 1)*binomial((k - 2),g)*(exp(x) - 1)^(k - g). a(3)=6 because we have: 113, 131, 133, 311, 313, 331. Cf. A240506. See the Heubach/Mansour reference. - Geoffrey Critzer, Apr 13 2014
For n > 0, a(n) is the minimal number of internal nodes of a red-black tree of height 2*n-2. See the Oct 02 2015 comment under A027383. - Herbert Eberle, Oct 02 2015
Conjecture: For n>0, a(n) is the least m such that A007814(A000108(m)) = n-1. - L. Edson Jeffery, Nov 27 2015
Actually this follows from the procedure for determining the multiplicity of prime p in C(n) given in A000108 by Franklin T. Adams-Watters: For p=2, the multiplicity is the number of 1 digits minus 1 in the binary representation of n+1. Obviously, the smallest k achieving "number of 1 digits" = k is 2^k-1. Therefore C(2^k-2) is divisible by 2^(k-1) for k > 0 and there is no smaller m for which 2^(k-1) divides C(m) proving the conjecture. - Peter Schorn, Feb 16 2020
For n >= 0, a(n) is the largest number you can write in bijective base-2 (a.k.a. the dyadic system, A007931) with n digits. - Harald Korneliussen, May 18 2019
The terms of this sequence are also the sum of the terms in each row of Pascal's triangle other than the ones. - Harvey P. Dale, Apr 19 2020
For n > 1, binomial(a(n),k) is odd if and only if k is even. - Charlie Marion, Dec 22 2020
For n >= 2, a(n+1) is the number of n X n arrays of 0's and 1's with every 2 X 2 square having density exactly 2. - David desJardins, Oct 27 2022
For n >= 1, a(n+1) is the number of roots of unity in the unique degree-n unramified extension of the 2-adic field Q_2. Note that for each p, the unique degree-n unramified extension of Q_p is the splitting field of x^(p^n) - x, hence containing p^n - 1 roots of unity for p > 2 and 2*(2^n - 1) for p = 2. - Jianing Song, Nov 08 2022

Examples

			a(4) = 14 because the 14 = 6 + 4 + 4 rationals (in lowest terms) for n = 3 are (see the Jun 14 2017 formula above): 1/2, 1, 3/2, 2, 5/2, 3; 1/4, 3/4, 5/4, 7/4; 1/8, 3/8, 5/8, 7/8. - _Wolfdieter Lang_, Jun 14 2017
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134. - Mohammad K. Azarian, Oct 27 2011
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 86, Exercise 3.16.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Row sums of triangle A026998.
Cf. A058809 (3^n-3, n>0).

Programs

  • Haskell
    a000918 = (subtract 2) . (2 ^)
    a000918_list = iterate ((subtract 2) . (* 2) . (+ 2)) (- 1)
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Magma
    [2^n - 2: n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(2^n-2,n=0..20) ;
  • Mathematica
    Table[2^n - 2, {n, 0, 29}] (* Alonso del Arte, Dec 01 2012 *)
  • PARI
    a(n)=2^n-2 \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    def A000918(n): return (1<Chai Wah Wu, Jun 10 2025

Formula

a(n) = 2*A000225(n-1).
G.f.: 1/(1 - 2*x) - 2/(1 - x), e.g.f.: (e^x - 1)^2 - 1. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
For n >= 1, a(n) = A008970(n + 1, 2). - Philippe Deléham, Feb 21 2004
G.f.: (3*x - 1)/((2*x - 1)*(x - 1)). - Simon Plouffe in his 1992 dissertation for the sequence without the leading -1
a(n) = 2*a(n - 1) + 2. - Alexandre Wajnberg, Apr 25 2005
a(n) = A000079(n) - 2. - Omar E. Pol, Dec 16 2008
a(n) = A058896(n)/A052548(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A164874(n - 1, n - 1) for n > 1. - Reinhard Zumkeller, Aug 29 2009
a(n) = A173787(n,1); a(n) = A028399(2*n)/A052548(n), n > 0. - Reinhard Zumkeller, Feb 28 2010
a(n + 1) = A027383(2*n - 1). - Jason Kimberley, Nov 02 2011
G.f.: U(0) - 1, where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k + 1)/(x*2^(k + 1) - (k + 1)/U(k + 1) ))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n+1) is the sum of row n in triangle A051601. - Reinhard Zumkeller, Aug 05 2013
a(n+1) = A127330(n,0). - Reinhard Zumkeller, Nov 16 2013
a(n) = Sum_{k=1..n-1} binomial(n, k) for n > 0. - Dan McCandless, Nov 14 2015
From Miquel Cerda, Aug 16 2016: (Start)
a(n) = A000225(n) - 1.
a(n) = A125128(n-1) - A000325(n).
a(n) = A095151(n) - A125128(n) - 1. (End)
a(n+1) = 2*(n + Sum_{j=1..n-1} (n-j)*2^(j-1)), n >= 1. This is the number of the rationals k/2, k = 1..2*n for n >= 1 and (2*k+1)/2^j for j = 2..n, n >= 2, and 2*k+1 < n-(j-1). See the example for n = 3 below. Motivated by the proposal A287012 by Mark Rickert. - Wolfdieter Lang, Jun 14 2017

Extensions

Maple programs fixed by Vaclav Kotesovec, Dec 13 2014

A052217 Numbers whose sum of digits is 3.

Original entry on oeis.org

3, 12, 21, 30, 102, 111, 120, 201, 210, 300, 1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 3000, 10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100, 21000, 30000, 100002, 100011, 100020, 100101
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2000

Keywords

Comments

From Joshua S.M. Weiner, Oct 19 2012: (Start)
Sequence is a representation of the "energy states" of "multiplex" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site. 3 = three objects reside in the site. (See A038447.) (End)
A007953(a(n)) = 3; number of repdigits = #{3,111} = A242627(3) = 2. - Reinhard Zumkeller, Jul 17 2014
Can be seen as a table whose n-th row holds the n-digit terms {10^(n-1) + 10^m + 10^k, 0 <= k <= m < n}, n >= 1. Row lengths are then (1, 3, 6, 10, ...) = n*(n+1)/2 = A000217(n). The first and the n last terms of row n are 10^(n-1) + 2 resp. 2*10^(n-1) + 10^k, 0 <= k < n. - M. F. Hasler, Feb 19 2020

Crossrefs

Cf. A007953, A218043 (subsequence).
Row n=3 of A245062.
Other digit sums: A011557 (1), A052216 (2), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Other bases: A014311 (binary), A226636 (ternary), A179243 (Zeckendorf).
Cf. A003056, A002262 (triangular coordinates), A056556, A056557, A056558 (tetrahedral coordinates).

Programs

  • Haskell
    a052217 n = a052217_list !! (n-1)
    a052217_list = filter ((== 3) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
    
  • Magma
    [n: n in [1..100101] | &+Intseq(n) eq 3 ]; // Vincenzo Librandi, Mar 07 2013
    
  • Mathematica
    Union[FromDigits/@Select[Flatten[Table[Tuples[Range[0,3],n],{n,6}],1],Total[#]==3&]] (* Harvey P. Dale, Oct 20 2012 *)
    Select[Range[10^6], Total[IntegerDigits[#]] == 3 &] (* Vincenzo Librandi, Mar 07 2013 *)
    Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 18]], {s, IntegerPartitions[3]}]]] (* T. D. Noe, Mar 08 2013 *)
  • PARI
    isok(n) = sumdigits(n) == 3; \\ Michel Marcus, Dec 28 2015
    
  • PARI
    apply( {A052217_row(n,s,t=-1)=vector(n*(n+1)\2,k,t++>s&&t=!s++;10^(n-1)+10^s+10^t)}, [1..5]) \\ M. F. Hasler, Feb 19 2020
    
  • Python
    from itertools import count, islice
    def agen(): yield from (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1))
    print(list(islice(agen(), 40))) # Michael S. Branicky, May 14 2022
    
  • Python
    from math import comb, isqrt
    from sympy import integer_nthroot
    def A052217(n): return 10**((m:=integer_nthroot(6*n,3)[0])-(a:=n<=comb(m+2,3)))+10**((k:=isqrt(b:=(c:=n-comb(m-a+2,3))<<1))-((b<<2)<=(k<<2)*(k+1)+1))+10**(c-1-comb(k+(b>k*(k+1)),2)) # Chai Wah Wu, Dec 11 2024

Formula

T(n,k) = 10^(n-1) + 10^A003056(k) + 10^A002262(k) when read as a table with row lengths n*(n+1)/2, n >= 1, 0 <= k < n*(n+1)/2. - M. F. Hasler, Feb 19 2020
a(n) = 10^A056556(n-1) + 10^A056557(n-1) + 10^A056558(n-1). - Kevin Ryde, Apr 17 2021

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Mar 07 2013

A069537 Multiples of 2 whose digit sum is 2.

Original entry on oeis.org

2, 20, 110, 200, 1010, 1100, 2000, 10010, 10100, 11000, 20000, 100010, 100100, 101000, 110000, 200000, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 20000000, 100000010, 100000100, 100001000
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Cf. A002024, A002260, A088404 (half).
Subsequence of A005349.
Row n=2 of A245062.

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=s+(r>s), y=if(r>s,r-s,r+s)>>1); 10^x + 10^y; \\ Kevin Ryde, Jul 17 2025
  • Python
    from itertools import product
    def agen():
      digits = 1
      while True:
        for i in range(digits-2): yield int("1"+"0"*(digits-3-i)+"1"+"0"*i+"0")
        yield int("2"+"0"*(digits-1))
        digits += 1
    g = agen()
    print([next(g) for i in range(32)]) # Michael S. Branicky, Feb 20 2021
    

Formula

a(n) = 10^A002024(n-1) + 10^A002260(n-1) for n >= 2. - Kevin Ryde, Jul 17 2025

Extensions

Corrected and extended by Ray Chandler, Sep 28 2003

A063997 Multiples of 4 whose digits add to 4.

Original entry on oeis.org

4, 40, 112, 220, 400, 1012, 1120, 1300, 2020, 2200, 3100, 4000, 10012, 10120, 10300, 11020, 11200, 12100, 13000, 20020, 20200, 21100, 22000, 30100, 31000, 40000, 100012, 100120, 100300, 101020, 101200, 102100, 103000, 110020, 110200, 111100
Offset: 1

Views

Author

Lisa O. Coulter (lcoulter(AT)stetson.edu), Sep 06 2001

Keywords

Examples

			4 is an element of the sequence, since 4 is a multiple of 4 the sum of whose digits is 4; 220 is an element of the sequence, since 220 = 4*55 and 2 + 2+ 0 = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[4Range[120000],Total[IntegerDigits[#]]==4&] (* Harvey P. Dale, May 07 2011 *)
  • PARI
    SumDE(x,y)= { local(s); s=0; while (x>9 && sHarry J. Smith, Sep 05 2009

Extensions

More terms from Ray Chandler, Sep 28 2003

A062768 Multiples of 6 such that the sum of the digits is equal to 6.

Original entry on oeis.org

6, 24, 42, 60, 114, 132, 150, 204, 222, 240, 312, 330, 402, 420, 510, 600, 1014, 1032, 1050, 1104, 1122, 1140, 1212, 1230, 1302, 1320, 1410, 1500, 2004, 2022, 2040, 2112, 2130, 2202, 2220, 2310, 2400, 3012, 3030, 3102, 3120, 3210, 3300, 4002, 4020, 4110
Offset: 1

Views

Author

Lisa O Coulter (lisa_coulter(AT)my-deja.com), Jul 17 2001

Keywords

Comments

Even numbers with sum of digits equal to 6 are Harshad numbers (A005349). - Davide Rotondo, Sep 04 2020

Examples

			60 is a member of the sequence since 60 / 6 = 10 and 6 + 0 = 6; 114 is also an element since 114 is divisible by 6 and 1 + 1+ 4 = 6.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 900; n := 6; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
  • Mathematica
    Select[ Range[ 6, 4200, 6 ], Plus @@ IntegerDigits[ # ] == 6 & ]

Extensions

More terms from Klaus Brockhaus, Jul 20 2001

A063416 Multiples of 7 whose sum of digits is equal to 7.

Original entry on oeis.org

7, 70, 133, 322, 511, 700, 1015, 1141, 1204, 1330, 2023, 2212, 2401, 3031, 3220, 4102, 5110, 7000, 10024, 10150, 10213, 10402, 11032, 11221, 11410, 12040, 12103, 13111, 13300, 15001, 20041, 20104, 20230, 21112, 21301, 22120, 23002, 24010
Offset: 1

Views

Author

Klaus Brockhaus, Jul 20 2001

Keywords

Comments

Numbers are all 7 mod 63.

Examples

			133 = 19*7 and 1+3+3 = 7, so 133 is a term of this sequence.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 5000; n := 7; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
    
  • Mathematica
    Select[Range[7, 25000, 7], Plus @@ IntegerDigits[ # ] == 7 &]
  • PARI
    forstep(m=0, 70000, 7, if(vecsum(digits(m))==7, print1(m, ", "))) \\ Harry J. Smith, Aug 20 2009

A069540 Multiples of 5 with digit sum 5.

Original entry on oeis.org

5, 50, 140, 230, 320, 410, 500, 1040, 1130, 1220, 1310, 1400, 2030, 2120, 2210, 2300, 3020, 3110, 3200, 4010, 4100, 5000, 10040, 10130, 10220, 10310, 10400, 11030, 11120, 11210, 11300, 12020, 12110, 12200, 13010, 13100, 14000, 20030, 20120
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[5*Range[5000],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 08 2017 *)

Extensions

Corrected and extended by Ray Chandler, Sep 28 2003

A069534 Smallest multiple of 5 with digit sum n.

Original entry on oeis.org

10, 20, 30, 40, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 195, 295, 395, 495, 595, 695, 795, 895, 995, 1995, 2995, 3995, 4995, 5995, 6995, 7995, 8995, 9995, 19995, 29995, 39995, 49995, 59995, 69995, 79995, 89995, 99995, 199995, 299995, 399995, 499995, 599995
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Comments

a(6) onwards the pattern is evident.

Crossrefs

Programs

  • Mathematica
    t={}; Do[i=5; While[Total[IntegerDigits[i]]!=n,i=i+5]; AppendTo[t,i],{n,46}]; t (* Jayanta Basu, May 19 2013 *)
    With[{f=5*Range[200000]},Flatten[Table[Select[f,Total[IntegerDigits[#]] == n&,1],{n,50}]]] (* Harvey P. Dale, Dec 31 2013 *)
  • PARI
    A069534(n)=(((n+4)%9+1)*10^((n+4)\9)-5)*10^(n<5) \\ M. F. Hasler, Sep 16 2016

Formula

a(n) = ((n+4)%9+1)*10^floor((n+4)/9)-5 for all n > 4, where % is the binary mod/remainder operator. - M. F. Hasler, Sep 16 2016
From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 14.
G.f.: 5*x*(72*x^13 - 18*x^12 - 18*x^11 - 18*x^10 - 18*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 - 7*x^4 + 2*x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 5 * A077492(n). - Alois P. Heinz, Sep 15 2020

Extensions

More terms from Ray Chandler, Jul 28 2003

A069543 Multiples of 8 with digit sum 8.

Original entry on oeis.org

8, 80, 152, 224, 440, 512, 800, 1016, 1160, 1232, 1304, 1520, 2024, 2240, 2312, 2600, 3032, 3104, 3320, 4040, 4112, 4400, 5120, 6200, 8000, 10016, 10160, 10232, 10304, 10520, 11024, 11240, 11312, 11600, 12032, 12104, 12320, 13040, 13112, 13400
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Sep 28 2003

A105279 a(0)=0; a(n) = 10*a(n-1) + 10.

Original entry on oeis.org

0, 10, 110, 1110, 11110, 111110, 1111110, 11111110, 111111110, 1111111110, 11111111110, 111111111110, 1111111111110, 11111111111110, 111111111111110, 1111111111111110, 11111111111111110, 111111111111111110, 1111111111111111110, 11111111111111111110, 111111111111111111110
Offset: 0

Views

Author

Alexandre Wajnberg, Apr 25 2005

Keywords

Comments

a(n) is the smallest even number with digits in {0,1} having digit sum n; in other words, the base 10 reading of the binary string of A000918(n). Cf. A069532. - Jason Kimberley, Nov 02 2011
Also, except for a(0), the binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 19 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Row n=10 of A228275.
Partial sums of A178500.

Programs

  • Haskell
    a105279 n = a105279_list !! n
    a105279_list = iterate ((* 10) . (+ 1)) 0
    -- Reinhard Zumkeller, Feb 05 2012
  • Magma
    [-10/9+(10/9)*10^n: n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
    
  • Mathematica
    NestList[10*(# + 1) &, 0, 25] (* Paolo Xausa, Jul 17 2024 *)

Formula

a(n) = (10/9)*(10^n - 1), with n>=0.
a(n) = Sum_{k=1..n} 10^k.
Repunits times 10: a(n) = 10 * A002275(n). - Reinhard Zumkeller, Feb 05 2012
From Stefano Spezia, Sep 15 2023: (Start)
O.g.f.: 10*x/((1 - x)*(1 - 10*x)).
E.g.f.: 10*exp(x)*(exp(9*x) - 1)/9. (End)
From Elmo R. Oliveira, Jun 18 2025: (Start)
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = A124166(n)/10.
a(n) = A161770(n)/100 for n >= 1. (End)
Showing 1-10 of 19 results. Next