cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A088406 a(n) = A063997(n)/4.

Original entry on oeis.org

1, 10, 28, 55, 100, 253, 280, 325, 505, 550, 775, 1000, 2503, 2530, 2575, 2755, 2800, 3025, 3250, 5005, 5050, 5275, 5500, 7525, 7750, 10000, 25003, 25030, 25075, 25255, 25300, 25525, 25750, 27505, 27550, 27775, 28000, 30025, 30250, 32500, 50005
Offset: 1

Views

Author

Ray Chandler, Sep 29 2003

Keywords

Crossrefs

Cf. A063997.

A069539 Duplicate of A063997.

Original entry on oeis.org

4, 40, 112, 220, 400, 1012, 1120, 1300, 2020, 2200, 3100, 4000, 10012, 10120, 10300
Offset: 0

Views

Author

Keywords

A245062 Array read by upward antidiagonals: Niven (or Harshad) numbers arranged in rows by their digit sums.

Original entry on oeis.org

1, 2, 10, 3, 20, 100, 4, 12, 110, 1000, 5, 40, 21, 200, 10000, 6, 50, 112, 30, 1010, 100000, 7, 24, 140, 220, 102, 1100, 1000000, 8, 70, 42, 230, 400, 111, 2000, 10000000, 9, 80, 133, 60, 320, 1012, 120, 10010, 100000000, 190, 18, 152, 322, 114, 410, 1120, 201, 10100, 1000000000
Offset: 1

Views

Author

L. Edson Jeffery, Jul 10 2014

Keywords

Comments

The n-th row contains in increasing order all multiples of n with digit sum n.
See A005349 for definitions and references.

Examples

			Array begins as:
  1  10  100  1000  10000  100000  1000000  10000000  100000000  1000000000
  2  20  110   200   1010    1100     2000     10010      10100       11000
  3  12   21    30    102     111      120       201        210         300
  4  40  112   220    400    1012     1120      1300       2020        2200
  5  50  140   230    320     410      500      1040       1130        1220
  6  24   42    60    114     132      150       204        222         240
  7  70  133   322    511     700     1015      1141       1204        1330
  8  80  152   224    440     512      800      1016       1160        1232
  9  18   27    36     45      54       63        72         81          90
190 280  370   460    550     640      730       820        910        1090
		

Crossrefs

Cf. A002998 (column 1), A245065 (column 2).
Cf. A011557 (row 1), A069537 (row 2), A052217 (row 3), A063997 (row 4), A069540 (row 5), A062768 (row 6), A063416 (row 7), A069543 (row 8), A052223 (row 9).
Cf. A082260 (main diagonal).
Cf. A007953, A005349 (Niven or Harshad numbers).
Cf. A082259.

A100357 Numbers k such that 2^k + k^2 + 1 is prime.

Original entry on oeis.org

0, 6, 12, 18, 162, 192, 216, 420, 1524, 5112, 7404, 24216, 25944, 101832, 346854
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Comments

a(15) > 200000. - Giovanni Resta, Mar 23 2014
All terms are multiples of 6. Corresponding primes of the form 2^n+n^2+1 are in A035325. - Zak Seidov, Apr 05 2014
a(16) > 5*10^5. - Robert Price, Jun 15 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(2^n + n^2 + 1) ]; // Vincenzo Librandi, Sep 03 2012
    
  • Mathematica
    {ta={{0}}, tb={{0}}}; Do[g=n;s=2^n+n^2+1;If[PrimeQ[s], Print[n];ta=Append[ta, n];tb=Append[tb, s]], {n, 0, 10000, 6}];{ta, tb, g}
    Select[Range[0, 10000, 6], PrimeQ[2^# + #^2 + 1] &] (* Vincenzo Librandi, Sep 03 2012 *)
  • PARI
    is(n)=isprime(2^n+n^2+1) \\ Charles R Greathouse IV, Jul 01 2013

Extensions

Added a(1) from Vincenzo Librandi, Sep 03 2012
a(12)-a(14) from Giovanni Resta, Mar 23 2014
Mathematica codes edited by Zak Seidov, Apr 05 2014
a(15) from Robert Price, Jun 15 2014

A062768 Multiples of 6 such that the sum of the digits is equal to 6.

Original entry on oeis.org

6, 24, 42, 60, 114, 132, 150, 204, 222, 240, 312, 330, 402, 420, 510, 600, 1014, 1032, 1050, 1104, 1122, 1140, 1212, 1230, 1302, 1320, 1410, 1500, 2004, 2022, 2040, 2112, 2130, 2202, 2220, 2310, 2400, 3012, 3030, 3102, 3120, 3210, 3300, 4002, 4020, 4110
Offset: 1

Views

Author

Lisa O Coulter (lisa_coulter(AT)my-deja.com), Jul 17 2001

Keywords

Comments

Even numbers with sum of digits equal to 6 are Harshad numbers (A005349). - Davide Rotondo, Sep 04 2020

Examples

			60 is a member of the sequence since 60 / 6 = 10 and 6 + 0 = 6; 114 is also an element since 114 is divisible by 6 and 1 + 1+ 4 = 6.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 900; n := 6; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
  • Mathematica
    Select[ Range[ 6, 4200, 6 ], Plus @@ IntegerDigits[ # ] == 6 & ]

Extensions

More terms from Klaus Brockhaus, Jul 20 2001

A063416 Multiples of 7 whose sum of digits is equal to 7.

Original entry on oeis.org

7, 70, 133, 322, 511, 700, 1015, 1141, 1204, 1330, 2023, 2212, 2401, 3031, 3220, 4102, 5110, 7000, 10024, 10150, 10213, 10402, 11032, 11221, 11410, 12040, 12103, 13111, 13300, 15001, 20041, 20104, 20230, 21112, 21301, 22120, 23002, 24010
Offset: 1

Views

Author

Klaus Brockhaus, Jul 20 2001

Keywords

Comments

Numbers are all 7 mod 63.

Examples

			133 = 19*7 and 1+3+3 = 7, so 133 is a term of this sequence.
		

Crossrefs

Programs

  • ARIBAS
    : var stk: stack; end; minarg := 0; maxarg := 5000; n := 7; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m," "); end; end;.
    
  • Mathematica
    Select[Range[7, 25000, 7], Plus @@ IntegerDigits[ # ] == 7 &]
  • PARI
    forstep(m=0, 70000, 7, if(vecsum(digits(m))==7, print1(m, ", "))) \\ Harry J. Smith, Aug 20 2009

A069540 Multiples of 5 with digit sum 5.

Original entry on oeis.org

5, 50, 140, 230, 320, 410, 500, 1040, 1130, 1220, 1310, 1400, 2030, 2120, 2210, 2300, 3020, 3110, 3200, 4010, 4100, 5000, 10040, 10130, 10220, 10310, 10400, 11030, 11120, 11210, 11300, 12020, 12110, 12200, 13010, 13100, 14000, 20030, 20120
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[5*Range[5000],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 08 2017 *)

Extensions

Corrected and extended by Ray Chandler, Sep 28 2003

A069543 Multiples of 8 with digit sum 8.

Original entry on oeis.org

8, 80, 152, 224, 440, 512, 800, 1016, 1160, 1232, 1304, 1520, 2024, 2240, 2312, 2600, 3032, 3104, 3320, 4040, 4112, 4400, 5120, 6200, 8000, 10016, 10160, 10232, 10304, 10520, 11024, 11240, 11312, 11600, 12032, 12104, 12320, 13040, 13112, 13400
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Sep 28 2003

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27
Showing 1-10 of 20 results. Next