A069534 Smallest multiple of 5 with digit sum n.
10, 20, 30, 40, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 195, 295, 395, 495, 595, 695, 795, 895, 995, 1995, 2995, 3995, 4995, 5995, 6995, 7995, 8995, 9995, 19995, 29995, 39995, 49995, 59995, 69995, 79995, 89995, 99995, 199995, 299995, 399995, 499995, 599995
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).
Programs
-
Mathematica
t={}; Do[i=5; While[Total[IntegerDigits[i]]!=n,i=i+5]; AppendTo[t,i],{n,46}]; t (* Jayanta Basu, May 19 2013 *) With[{f=5*Range[200000]},Flatten[Table[Select[f,Total[IntegerDigits[#]] == n&,1],{n,50}]]] (* Harvey P. Dale, Dec 31 2013 *)
-
PARI
A069534(n)=(((n+4)%9+1)*10^((n+4)\9)-5)*10^(n<5) \\ M. F. Hasler, Sep 16 2016
Formula
a(n) = ((n+4)%9+1)*10^floor((n+4)/9)-5 for all n > 4, where % is the binary mod/remainder operator. - M. F. Hasler, Sep 16 2016
From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 14.
G.f.: 5*x*(72*x^13 - 18*x^12 - 18*x^11 - 18*x^10 - 18*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 - 7*x^4 + 2*x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 5 * A077492(n). - Alois P. Heinz, Sep 15 2020
Extensions
More terms from Ray Chandler, Jul 28 2003
Comments