cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069567 Smaller of two consecutive primes which are anagrams of each other.

Original entry on oeis.org

1913, 18379, 19013, 25013, 34613, 35617, 35879, 36979, 37379, 37813, 40013, 40213, 40639, 45613, 48091, 49279, 51613, 55313, 56179, 56713, 58613, 63079, 63179, 64091, 65479, 66413, 74779, 75913, 76213, 76579, 76679, 85313, 88379, 90379, 90679, 93113, 94379, 96079
Offset: 1

Views

Author

Amarnath Murthy, Mar 24 2002

Keywords

Comments

Smaller members of Ormiston prime pairs.
Given the n-th prime, it is occasionally possible to form the (n+1)th prime using the same digits in a different order. Such a pair is called an Ormiston pair.
Ormiston pairs occur rarely but randomly. It is thought that there are infinitely many but this has not been proved. They always differ by a multiple of 18. Ormiston triples also exist - see A075093.
"Anagram" means that both primes must not only use the same digits but must use each digit the same number of times. [From Harvey P. Dale, Mar 06 2012]
Dickson's conjecture would imply that the sequence is infinite, e.g. that there are infinitely many k for which 1913+3972900*k and 1931+3972900*k form an Ormiston pair. - Robert Israel, Feb 23 2017

Examples

			1913 and 1931 are two successive primes.
Although 179 and 197 are composed of the same digits, they do not form an Ormiston pair as several other primes intervene (i.e. 181, 191, 193).
		

References

  • Andy Edwards, Ormiston Pairs, Australian Mathematics Teacher, Vol. 58, No. 2 (2002), pp. 12-13.

Crossrefs

Programs

  • Haskell
    import Data.List (sort)
    a069567 n = a069567_list !! (n-1)
    a069567_list = f a000040_list where
       f (p:ps@(p':_)) = if sort (show p) == sort (show p')
                         then p : f ps else f ps
    -- Reinhard Zumkeller, Apr 03 2015
    
  • Maple
    N:= 10^6: # to get all terms <= N
    R:= NULL: p:= 3: q:= 5:
    while p <= N do
      p:= q;
      q:= nextprime(q);
      if q-p mod 18 = 0 and sort(convert(p,base,10)) = sort(convert(q,base,10)) then
        R:= R, p
      fi
    od:
    R; # Robert Israel, Feb 23 2017
  • Mathematica
    Prime[ Select[ Range[10^4], Sort[ IntegerDigits[ Prime[ # ]]] == Sort[ IntegerDigits[ Prime[ # + 1]]] & ]]
    a = {1}; b = {2}; Do[b = Sort[ IntegerDigits[ Prime[n]]]; If[a == b, Print[ Prime[n - 1], ", ", Prime[n]]]; a = b, {n, 1, 10^4}]
    Transpose[Select[Partition[Prime[Range[8600]],2,1],Sort[IntegerDigits[ First[#]]] == Sort[ IntegerDigits[Last[#]]]&]][[1]] (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    is(n)=isprime(n)&&vecsort(Vec(Str(n)))==vecsort(Vec(Str(nextprime(n+1)))) \\ Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    p=2;forprime(q=3,1e5,if((q-p)%18==0&&vecsort(Vec(Str(p)))==vecsort(Vec(Str(q))),print1(p", "));p=q) \\ Charles R Greathouse IV, Aug 09 2011, minor edits by M. F. Hasler, Oct 11 2012
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        p, hp, q, hq = 2, "2", 3, "3"
        while True:
            if hp == hq: yield p
            p, q = q, nextprime(q)
            hp, hq = hq, "".join(sorted(str(q)))
    print(list(islice(agen(), 38))) # Michael S. Branicky, Feb 19 2024

Extensions

Comments and references from Andy Edwards (AndynGen(AT)aol.com), Jul 09 2002
Edited by Robert G. Wilson v, Jul 15 2002 and Aug 29 2002
Minor edits by Ray Chandler, Jul 16 2009