A069567 Smaller of two consecutive primes which are anagrams of each other.
1913, 18379, 19013, 25013, 34613, 35617, 35879, 36979, 37379, 37813, 40013, 40213, 40639, 45613, 48091, 49279, 51613, 55313, 56179, 56713, 58613, 63079, 63179, 64091, 65479, 66413, 74779, 75913, 76213, 76579, 76679, 85313, 88379, 90379, 90679, 93113, 94379, 96079
Offset: 1
Examples
1913 and 1931 are two successive primes. Although 179 and 197 are composed of the same digits, they do not form an Ormiston pair as several other primes intervene (i.e. 181, 191, 193).
References
- Andy Edwards, Ormiston Pairs, Australian Mathematics Teacher, Vol. 58, No. 2 (2002), pp. 12-13.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jens Kruse Andersen, Ormiston Tuples
- Andy Edwards, Ormiston Pairs [Archive machine link]; local copy [with permission]
- Eric Weisstein's World of Mathematics, Rearrangement Prime Pair.
Programs
-
Haskell
import Data.List (sort) a069567 n = a069567_list !! (n-1) a069567_list = f a000040_list where f (p:ps@(p':_)) = if sort (show p) == sort (show p') then p : f ps else f ps -- Reinhard Zumkeller, Apr 03 2015
-
Maple
N:= 10^6: # to get all terms <= N R:= NULL: p:= 3: q:= 5: while p <= N do p:= q; q:= nextprime(q); if q-p mod 18 = 0 and sort(convert(p,base,10)) = sort(convert(q,base,10)) then R:= R, p fi od: R; # Robert Israel, Feb 23 2017
-
Mathematica
Prime[ Select[ Range[10^4], Sort[ IntegerDigits[ Prime[ # ]]] == Sort[ IntegerDigits[ Prime[ # + 1]]] & ]] a = {1}; b = {2}; Do[b = Sort[ IntegerDigits[ Prime[n]]]; If[a == b, Print[ Prime[n - 1], ", ", Prime[n]]]; a = b, {n, 1, 10^4}] Transpose[Select[Partition[Prime[Range[8600]],2,1],Sort[IntegerDigits[ First[#]]] == Sort[ IntegerDigits[Last[#]]]&]][[1]] (* Harvey P. Dale, Mar 06 2012 *)
-
PARI
is(n)=isprime(n)&&vecsort(Vec(Str(n)))==vecsort(Vec(Str(nextprime(n+1)))) \\ Charles R Greathouse IV, Aug 09 2011
-
PARI
p=2;forprime(q=3,1e5,if((q-p)%18==0&&vecsort(Vec(Str(p)))==vecsort(Vec(Str(q))),print1(p", "));p=q) \\ Charles R Greathouse IV, Aug 09 2011, minor edits by M. F. Hasler, Oct 11 2012
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms p, hp, q, hq = 2, "2", 3, "3" while True: if hp == hq: yield p p, q = q, nextprime(q) hp, hq = hq, "".join(sorted(str(q))) print(list(islice(agen(), 38))) # Michael S. Branicky, Feb 19 2024
Extensions
Comments and references from Andy Edwards (AndynGen(AT)aol.com), Jul 09 2002
Edited by Robert G. Wilson v, Jul 15 2002 and Aug 29 2002
Minor edits by Ray Chandler, Jul 16 2009
Comments