A185682 Irregular triangle, read by rows, of primes with prefix n and digits "1" appended, otherwise 0.
11, 0, 31, 311, 41, 0, 61, 71, 0, 0, 101, 0, 0, 131, 0, 151, 1511, 0, 0, 181, 1811, 191, 0, 211, 2111, 0, 0, 241, 2411, 251, 0, 271, 2711, 281, 0, 0, 311, 0, 331, 0, 0, 0, 0, 0, 0, 401, 0, 421, 4211, 431, 0, 0, 461, 0, 0, 491, 0, 0, 521, 0, 541, 0, 0, 571, 5711, 0, 0, 601, 6011, 0, 0
Offset: 1
Examples
For k=1..2, a(15, k) = {151, 1511} are in the sequence. Triangle begins: 11; 0; 31, 311; 41; 0; 61; 71; 0; 0; 101; ...
Crossrefs
Cf. A069568 (least number of 1's to append to n to make a prime).
Programs
-
Maple
with(numtheory): for n from 1 to 100 do:a0:=n:id:=0:c:=0:for k from 1 to 20 while (id=0) do:a1:=a0*10+1:if type(a1,prime)=true then a0:=a1:printf(`%d, `,a0):c:=c+1:else id:=1:fi:od:if c=0 then printf(`%d, `,0):else fi:od:~
-
Mathematica
Reap[Do[cnt = 0; d = IntegerDigits[n]; While[p = FromDigits[AppendTo[d, 1]]; PrimeQ[p], cnt++; Sow[p]]; If[cnt == 0, Sow[0]], {n, 61}]][[2, 1]]
Comments