A069626 Number of sets of integers larger than one whose least common multiple is n.
1, 1, 1, 2, 1, 5, 1, 4, 2, 5, 1, 22, 1, 5, 5, 8, 1, 22, 1, 22, 5, 5, 1, 92, 2, 5, 4, 22, 1, 109, 1, 16, 5, 5, 5, 200, 1, 5, 5, 92, 1, 109, 1, 22, 22, 5, 1, 376, 2, 22, 5, 22, 1, 92, 5, 92, 5, 5, 1, 1874, 1, 5, 22, 32, 5, 109, 1, 22, 5, 109, 1, 1696, 1, 5, 22, 22, 5, 109, 1, 376, 8, 5, 1, 1874, 5, 5, 5, 92, 1, 1874, 5, 22
Offset: 1
Examples
a(6) = 5 as there are five such sets of natural numbers larger than one whose least common multiple is six: {6}, {2, 6}, {3, 6}, {2, 3} and {2, 3, 6}. a(12) = 22 from {12}, {4,3}, {2,4,3}, {4,6}, {2,4,6}, {4,3,6}, {2,4,3,6}, {2,12}, {4,12}, {2,4,12}, {3,12}, {2,3,12}, {4,3,12}, {2,4,3,12}, {6,12}, {2,6,12}, {4,6,12}, {2,4,6,12}, {3,6,12}, {2,3,6,12}, {4,3,6,12}, {2,4,3,6,12}. From _Antti Karttunen_, Feb 18 2024: (Start) a(1) = 1 as there is only one set that satisfies the criteria, namely, an empty set {}, whose lcm is 1. a(2) = 1 as the only set that satisfies the criteria is a singleton set {2}. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Index entries for sequences computed from exponents in factorization of n
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
Haskell
-- following Vladeta Jovovic's formula. a069626 n = sum $ map (\d -> (a008683 (n `div` d)) * 2 ^ (a000005 d - 1)) $ a027750_row n -- Reinhard Zumkeller, Jun 12 2015, Feb 07 2011 (APL, Dyalog dialect) divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} A069626 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{∧/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (quite taxing on memory) - Antti Karttunen, Feb 18 2024
-
Maple
with(numtheory): seq(add(mobius(n/d)*2^(tau(d)-1), d in divisors(n)), n=1..80); # Ridouane Oudra, Mar 12 2024
-
Mathematica
a[n_] := Sum[ MoebiusMu[n/d] * 2^(DivisorSigma[0, d] - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 92}](* Jean-François Alcover, Nov 30 2011, after Vladeta Jovovic *)
-
PARI
A069626(n) = sumdiv(n,d,moebius(n/d)*2^(numdiv(d)-1)); \\ Antti Karttunen, Feb 18 2024
Formula
a(n) = Sum_{ d divides n } mu(n/d)*2^(tau(d)-1). - Vladeta Jovovic, Jul 07 2003
a(n) = A076078(n)/2, for n > 1. - Ridouane Oudra, Mar 12 2024
Extensions
Corrected and extended by Naohiro Nomoto, Apr 25 2002
Definition and examples clarified by Antti Karttunen, Feb 18 2024
Comments