A069677 Primes with either no internal digits or all internal digits are 2.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 127, 223, 227, 229, 421, 521, 523, 727, 821, 823, 827, 829, 929, 1223, 1229, 2221, 3221, 3229, 4229, 5227, 6221, 6229, 7229, 8221, 9221, 9227, 12227, 22229, 42221
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..275 (1..80 from Harvey P. Dale, 81..178 from David A. Corneth, all terms with <= 1000 digits)
Programs
-
Mathematica
Join[Prime[Range[25]],Select[Prime[Range[26,4500]],Union[Most[ Rest[ IntegerDigits[ #]]]] =={2}&]] (* Harvey P. Dale, Aug 12 2021 *)
-
PARI
uptoqdigits(n) = { my(ld = [1,3,7,9]); n = max(n, 2); res = List(primes(primepi(97))); for(i = 1, n-2, twos = 20*(10^i\9); for(j = 1, 9, for(k = 1, #ld, c = j*10^(i+1) + twos + ld[k]; if(isprime(c), listput(res, c) ) ) ) ); Set(res) } \\ David A. Corneth, Aug 12 2021
-
Python
from sympy import isprime def agen(maxdigits): yield from [2, 3, 5, 7] for d in range(2, maxdigits+1): pow10, mid = 10**(d-1), 0 if d < 3 else 10*int('2'*(d-2)) cands = (a*pow10+mid+b for a in range(1, 10) for b in [1, 3, 7, 9]) yield from filter(isprime, cands) print([an for an in agen(100)]) # Michael S. Branicky, Aug 12 2021
Extensions
Corrected by Ray Chandler, Nov 24 2003
Offset corrected and name changed by Arkadiusz Wesolowski, Sep 07 2011