cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A073903 Duplicate of A069710.

Original entry on oeis.org

11, 1021, 1201, 2011, 3001, 10103, 10211, 10301, 11003, 12011, 12101, 13001, 20021, 20201, 21011, 21101
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

A069711 Squares whose arithmetic mean of digits is an integer (i.e., the sum of digits is a multiple of the number of digits).

Original entry on oeis.org

0, 1, 4, 9, 64, 144, 225, 324, 441, 576, 729, 900, 1681, 3364, 3481, 4624, 7225, 9025, 12769, 14884, 21025, 23104, 24649, 24964, 27556, 30976, 32041, 33856, 36100, 37249, 37636, 44944, 48841, 56644, 63001, 65536, 66049, 70756, 75076, 75625, 80089, 80656, 85264
Offset: 1

Views

Author

Amarnath Murthy, Apr 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ If[ IntegerQ[ Apply[ Plus, IntegerDigits[n^2]] / Floor[ Log[10, n^2] + 1]], Print[n^2]], {n, 1, 10^3}]

Extensions

Edited and extended by Robert G. Wilson v, Apr 12 2002
0 prepended as a(1) and a(27)-a(43) from Jon E. Schoenfield, Jun 28 2018

A069709 Primes with arithmetic mean of digits an integer (sum of digits = a multiple of number of digits).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 1021, 1061, 1069, 1087, 1151, 1201, 1223, 1249, 1289, 1429, 1447, 1483, 1487, 1511, 1559, 1601, 1609, 1627, 1663, 1667, 1753, 1847, 1861, 1933, 1951, 1973, 1999, 2011, 2099, 2141, 2213, 2239, 2293
Offset: 1

Views

Author

Amarnath Murthy, Apr 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; If[ IntegerQ[ Apply[ Plus, IntegerDigits[p]] / Floor[ Log[10, p] + 1]], Print[p]], {n, 1, 10^3}]
    Select[Prime[Range[400]],IntegerQ[Mean[IntegerDigits[#]]]&] (* Harvey P. Dale, Jan 29 2012 *)

Extensions

Edited and extended by Robert G. Wilson v, Apr 12 2002

A285096 Primes with integer arithmetic mean of digits = 2 in base 10.

Original entry on oeis.org

2, 13, 31, 1061, 1151, 1223, 1511, 1601, 2141, 2213, 2411, 3023, 3041, 3203, 3221, 4013, 4211, 5003, 5021, 6011, 6101, 7001, 10009, 10243, 10333, 10513, 10531, 10711, 11071, 11161, 11251, 11503, 11701, 12007, 12043, 12241, 12421, 12511, 12601, 13033, 13411
Offset: 1

Views

Author

Jaroslav Krizek, Apr 16 2017

Keywords

Crossrefs

Primes in A061385. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), this sequence (k = 2), A285225 (k = 4), A285226 (k = 5), A285227 (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 2];
  • Maple
    S:= proc(d,k,flag) option remember;
      if d = 1 then
        if k >= 0 and k <= 9 then return [k]
        else return []
        fi
      fi;
      [seq(op(map(`+`, procname(d-1,k-i,0), i*10^(d-1))),i=flag..min(k,9))]
    end proc:
    seq(op(select(isprime,S(d,2*d,1))),d=1..5);# Robert Israel, Apr 23 2017
  • Mathematica
    Select[Prime[Range[1600]],Mean[IntegerDigits[#]]==2&] (* Harvey P. Dale, Aug 07 2021 *)

A285225 Primes with integer arithmetic mean of digits = 4 in base 10.

Original entry on oeis.org

17, 53, 71, 1069, 1087, 1249, 1429, 1447, 1483, 1609, 1627, 1663, 1753, 1861, 1933, 1951, 2239, 2293, 2347, 2383, 2437, 2473, 2617, 2671, 2707, 2833, 2851, 3049, 3067, 3229, 3319, 3373, 3391, 3463, 3517, 3571, 3607, 3643, 3733, 3823, 3931, 4057, 4093, 4129
Offset: 1

Views

Author

Jaroslav Krizek, Apr 16 2017

Keywords

Crossrefs

Primes in A061387. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), A285096 (k = 2), this sequence (k = 4), A285226 (k = 5), A285227 (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 4];
  • Mathematica
    Select[Prime[Range[600]],Mean[IntegerDigits[#]]==4&] (* Harvey P. Dale, Jun 11 2024 *)

A285226 Primes with integer arithmetic mean of digits = 5 in base 10.

Original entry on oeis.org

5, 19, 37, 73, 1289, 1487, 1559, 1667, 1847, 1973, 2099, 2297, 2459, 2477, 2549, 2657, 2693, 2729, 2819, 2837, 2909, 2927, 2963, 3089, 3359, 3449, 3467, 3539, 3557, 3593, 3719, 3863, 3881, 3917, 4079, 4259, 4349, 4457, 4493, 4547, 4583, 4637, 4673, 4691, 4817
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2017

Keywords

Crossrefs

Primes from A061388. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), A285096 (k = 2), A285225 (k = 4), this sequence (k = 5), A285227 (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 5];
  • Mathematica
    Select[Prime@ Range@ PrimePi@ 5000, Mean@ IntegerDigits@ # == 5 &] (* Michael De Vlieger, Apr 22 2017 *)

A285227 Primes with integer arithmetic mean of digits = 7 in base 10.

Original entry on oeis.org

7, 59, 1999, 3889, 4789, 4969, 4987, 5689, 5779, 5869, 6679, 6949, 6967, 7489, 7669, 7687, 7759, 7867, 7993, 8389, 8677, 8839, 8893, 8929, 9199, 9397, 9649, 9739, 9829, 9883, 9973, 18899, 19889, 19979, 19997, 28979, 29789, 29879, 35999, 36899, 37799, 37889
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2017

Keywords

Crossrefs

Primes from A061424. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), A285096 (k = 2), A285225 (k = 4), A285226 (k = 5), this sequence (k = 7), A285228 (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 7]
    
  • Mathematica
    Select[Prime@ Range@ PrimePi@ 40000, Mean@ IntegerDigits@ # == 7 &] (* Michael De Vlieger, Apr 22 2017 *)
  • Python
    from itertools import count, islice
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    from sympy import isprime
    def A285227_gen(): # generator of terms
        yield 7
        for l in count(2):
            for i in range(1,10):
                yield from sorted(q for q in (int(str(i)+''.join(map(str,j))) for s,p in partitions(7*l-i,m=l-1,k=9,size=True) for j in multiset_permutations([0]*(l-1-s)+list(Counter(p).elements()))) if isprime(q))
    A285227_list = list(islice(A285227_gen(),30)) # Chai Wah Wu, Nov 29 2023

A285228 Primes with integer arithmetic mean of digits = 8 in base 10.

Original entry on oeis.org

79, 97, 6899, 8699, 8969, 9689, 9887, 49999, 68899, 69997, 77899, 78889, 78979, 79699, 79987, 85999, 88789, 88897, 88969, 89599, 89689, 89779, 89797, 89959, 89977, 94999, 95989, 96799, 96979, 96997, 97789, 97879, 97987, 98689, 98779, 98869, 98887, 99679, 99787
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2017

Keywords

Crossrefs

Primes from A061425. Subsequence of A069709.
Sequences of primes such that a(n) = k for k = 1, 2, 4, 5, 7 and 8: A069710 (k = 1), A285096 (k = 2), A285225 (k = 4), A285226 (k = 5), A285227 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and &+Intseq(n) mod #Intseq(n) eq 0 and &+Intseq(n) / #Intseq(n) eq 8];
    
  • Mathematica
    Select[Prime@ Range@ PrimePi[10^5], Mean@ IntegerDigits@ # == 8 &] (* Michael De Vlieger, Apr 22 2017 *)
  • Python
    from itertools import count, islice
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    def A285228_gen(): # generator of terms
        for l in count(2):
            for i in range(1,10):
                yield from sorted(q for q in (int(str(i)+''.join(map(str,j))) for s,p in partitions((l<<3)-i,m=l-1,k=9,size=True) for j in multiset_permutations([0]*(l-1-s)+list(Counter(p).elements()))) if isprime(q))
    A285228_list = list(islice(A285228_gen(),30)) # Chai Wah Wu, Nov 28 2023

A069712 Triangular numbers with arithmetic mean of digits = integer (sum of digits = A multiple of the number of digits).

Original entry on oeis.org

1, 3, 6, 15, 28, 55, 66, 91, 105, 120, 153, 171, 210, 231, 276, 300, 351, 378, 435, 465, 528, 561, 630, 666, 741, 780, 861, 903, 990, 1128, 1326, 1830, 2145, 2415, 3081, 5151, 5995, 6105, 7140, 8385, 8646, 9591, 9870, 10153, 11026, 11175, 12246, 12403
Offset: 0

Views

Author

Amarnath Murthy, Apr 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ If[ IntegerQ[ Apply[ Plus, IntegerDigits[n(n + 1)/2]] / Floor[ Log[10, n(n + 1)/2] + 1]], Print[n(n + 1)/2]], {n, 1, 10^3}]
    Select[Accumulate[Range[200]],IntegerQ[Mean[IntegerDigits[#]]]&] (* Harvey P. Dale, Jun 17 2017 *)

Extensions

Edited and extended by Robert G. Wilson v, Apr 12 2002

A199169 Primes such that the sum of the squares of their digits equals the number of their digits.

Original entry on oeis.org

11, 102001, 1000121, 1000211, 1002101, 1010201, 1020011, 1020101, 1021001, 1102001, 1120001, 1201001, 2001101, 2100011, 2110001, 100012111, 100101121, 100110121, 100112101, 100121011, 100211101, 101020111, 101100211, 101102101, 101110201, 101210101, 102100111
Offset: 1

Views

Author

Michel Lagneau, Nov 03 2011

Keywords

Comments

A subsequence of 1, 11, 111, 1111, 2000, 10002, 10020, 10200, 11111,... which contains n such that A003132(n) = A055642(n). - R. J. Mathar, Nov 07 2011

Examples

			a(2) = 102001 is in the sequence because 1^2+0^2+2^2+0^2+0^2+1^2 = 6 = length(a(2)).
		

Crossrefs

Programs

  • Maple
    g:= proc(n,s) option remember; # <= n-digit numbers with sum of squares of digits = s
         option remember; local j;
        if s = 0 then return [0]
        elif n = 0 then return []
        fi;
        [seq(op(map(t -> 10*t + j, procname(n-1, s-j^2))),j=0 .. min(9,floor(sqrt(s))))]
    end proc:
    sort([seq(op(select(t -> t >= 10^(n-1) and isprime(t), g(n,n))),n=1..9)]); # Robert Israel, Jan 09 2025
  • Mathematica
    fQ[n_] := Plus @@ (IntegerDigits[n]^2) == IntegerLength[n]; Select[Prime[Range[100000000]], fQ] (* Robert G. Wilson v, Nov 07 2011 *)
Showing 1-10 of 13 results. Next