cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A246596 Run Length Transform of Catalan numbers A000108.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 1, 1, 1, 2, 1, 1, 2, 5, 2, 2, 2, 4, 5, 5, 14, 42, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 2, 2, 2, 4, 2, 2, 4, 10, 5, 5, 5, 10, 14, 14, 42, 132, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 2, 2, 5, 14, 1, 1, 1, 2, 1, 1, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2014

Keywords

Comments

The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			From _Omar E. Pol_, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,2;
1,1,2,5;
1,1,1,2,2,2,5,14;
1,1,1,2,1,1,2,5,2,2,2,4,5,5,14,42;
1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,2,2,2,4,2,2,4,10,5,5,5,10,14,14,42,132;
...
Right border gives the Catalan numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000108.
(End)
		

Crossrefs

Cf. A000108.
Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A005940, A069739, A071053, A227349, A246588, A246595, A246660, A246661, A246674.

Programs

  • Maple
    Cat:=n->binomial(2*n,n)/(n+1);
    ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
    od:
    a:=mul(Cat(i), i in lis);
    ans:=[op(ans), a];
    od:
    ans;
  • Mathematica
    f = CatalanNumber; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 87}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import divexact
    from re import split
    def A246596(n):
        s, c = bin(n)[2:], [1, 1]
        for m in range(1, len(s)):
            c.append(divexact(c[-1]*(4*m+2),(m+2)))
        return reduce(mul,(c[len(d)] for d in split('0+',s))) if n > 0 else 1
    # Chai Wah Wu, Sep 07 2014
    
  • Sage
    # uses[RLT from A246660]
    A246596_list = lambda len: RLT(lambda n: binomial(2*n, n)/(n+1), len)
    A246596_list(88) # Peter Luschny, Sep 07 2014
    
  • Scheme
    ; using MIT/GNU Scheme
    (define (A246596 n) (fold-left (lambda (a r) (* a (A000108 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    (define A000108 (EIGEN-CONVOLUTION 1 *))
    ;; Note: EIGEN-CONVOLUTION can be found from my IntSeq-library and other functions are as in A227349. - Antti Karttunen, Sep 08 2014

Formula

a(n) = A069739(A005940(1+n)). - Antti Karttunen, May 29 2017

A066060 Number of nilpotent groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 14, 1, 2, 1, 2, 1, 1, 1, 5, 2, 1, 5, 2, 1, 1, 1, 51, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 14, 2, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 2, 1, 1, 2, 267, 1, 1, 1, 2, 1, 1, 1, 10, 1, 1, 2, 2, 1, 1, 1, 14, 15, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 51, 1, 2, 2, 4, 1
Offset: 1

Views

Author

Reiner Martin, Dec 29 2001

Keywords

Comments

Multiplicative with a(p^m) equal to the number of groups of order p^m.

Crossrefs

Programs

  • Mathematica
    terms = 101; fgc = FiniteGroupCount[Range[terms]]; a[1] = 1; a[n_ /; PrimePowerQ[n] && 1 < n <= terms] := a[n] = fgc[[n]]; a[n_ /; 1 < n <= terms] := a[n] = Times @@ (a[#[[1]]^#[[2]]]& /@ FactorInteger[n]); Array[a, terms] (* Jean-François Alcover, Oct 03 2017 *)

A318476 Multiplicative with a(p^e) = 2^A000108(e).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 32, 4, 4, 2, 8, 2, 4, 4, 16384, 2, 8, 2, 8, 4, 4, 2, 64, 4, 4, 32, 8, 2, 8, 2, 4398046511104, 4, 4, 4, 16, 2, 4, 4, 64, 2, 8, 2, 8, 8, 4, 2, 32768, 4, 8, 4, 8, 2, 64, 4, 64, 4, 4, 2, 16, 2, 4, 8, 5444517870735015415413993718908291383296, 4, 8, 2, 8, 4, 8, 2, 128, 2, 4, 8, 8, 4, 8, 2, 32768, 16384, 4, 2, 16, 4, 4, 4, 64, 2, 16, 4, 8, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2018

Keywords

Crossrefs

Cf. also A069739.

Programs

  • PARI
    A000108(n) = (binomial(2*n, n)/(n+1));
    A318476(n) = factorback(apply(e -> 2^A000108(e),factor(n)[,2]));

Formula

a(n) = 2^A318475(n).
Showing 1-4 of 4 results.