A069748 Numbers k such that k and k^3 are both palindromes.
0, 1, 2, 7, 11, 101, 111, 1001, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001, 1010000101, 1100000011, 10000000001
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..117
- Vladimir Shevelev, Re: numbers whose cube is a palindrome, seqfan list, May 25 2011
Programs
-
Mathematica
isPalin[n_] := (n == FromDigits[Reverse[IntegerDigits[n]]]); Do[m = n^3; If[isPalin[n] && isPalin[m], Print[{n, m}]], {n, 1, 10^6}]
-
PARI
ispal(n) = my(d=digits(n)); d == Vecrev(d); isok(n) = ispal(n) && ispal(n^3); \\ Michel Marcus, Dec 16 2018
Extensions
a(29) and beyond from Michael S. Branicky, Aug 06 2022
Comments