cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069748 Numbers k such that k and k^3 are both palindromes.

Original entry on oeis.org

0, 1, 2, 7, 11, 101, 111, 1001, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001, 1010000101, 1100000011, 10000000001
Offset: 1

Views

Author

Joseph L. Pe, Apr 22 2002

Keywords

Comments

For an arithmetical function f, call the pairs (x,y) such that y = f(x) and x, y are palindromes the "palinpairs" of f. {a(n)} is then the sequence of abscissae of palinpairs of f(n) = n^3.
Perhaps this sequence is the same as A002780, except for 2201. - Dmitry Kamenetsky, Apr 16 2009
For n >= 5, there are no terms with digit sum 5. Conjecture: all terms belong to one of 3 disjoint classes of the following forms: 10^k+1, 10^(2*t)+10^t+1, t > 0, and (10^u+1)*(10^v+1), u,v > 0, with digit sums 2, 3 and 4 correspondingly. - Vladimir Shevelev, May 31 2011

Crossrefs

Intersection of A002113 and A002780.

Programs

  • Mathematica
    isPalin[n_] := (n == FromDigits[Reverse[IntegerDigits[n]]]); Do[m = n^3; If[isPalin[n] && isPalin[m], Print[{n, m}]], {n, 1, 10^6}]
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = ispal(n) && ispal(n^3); \\ Michel Marcus, Dec 16 2018

Extensions

a(29) and beyond from Michael S. Branicky, Aug 06 2022