cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069885 Duplicate of A069748.

Original entry on oeis.org

1, 2, 7, 11, 101, 111, 1001, 10001, 10101, 11011, 100001, 101101, 110011, 1000001
Offset: 1

Views

Author

Keywords

A191355 Indices of terms in A069748 with two decimal digits 1 and all others 0.

Original entry on oeis.org

5, 6, 8, 9, 12, 15, 18, 22, 27, 31, 37, 43, 49, 56, 64, 71, 80, 89, 98, 108
Offset: 1

Views

Author

Vladimir Shevelev, May 31 2011

Keywords

Crossrefs

Formula

Conjectural formula: a(n) = 5 + Sum_{i=1..n-1} A105637(i).
Equivalent conjecture: a(n) = -(-1)^n/8 + A049347(n)/3 + 115/24 + n/6 + n^2/4. - R. J. Mathar, Jul 11 2011

Extensions

a(18)-a(20), using A002780 b-file, added by Michel Marcus, Apr 17 2023

A191356 Interpret the terms of A069748 having only decimal digits 0 and 1 as binary numbers and then convert those numbers to decimal.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 17, 21, 27, 33, 45, 51, 65, 73, 99, 129, 153, 165, 195, 257, 273, 297, 325, 367, 513, 561
Offset: 1

Views

Author

Vladimir Shevelev, May 31 2011

Keywords

Comments

May be the same sequence obtained from reading the terms of A002780 having only digits 0,1 in base 2 and converting to decimal.

Examples

			A069748(10)=10101 is the eighth number of A069748 having only digits 0 and 1. The binary number 10101 equals 21 in decimal. Thus a(8)=21.
		

Crossrefs

Cf. A002780.

A046243 Numbers whose cube is palindromic in base 11.

Original entry on oeis.org

0, 1, 2, 7, 12, 122, 133, 1332, 14642, 14763, 15984, 161052, 162504, 175704, 1771562, 1772893, 1932624, 19487172, 19503144, 19648344, 21258744, 214358882, 214373523, 214521264, 216130564, 233846064, 2357947692, 2358123384, 2377434984, 2572306584, 25937424602
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Contains all terms of A069748, interpreted as base-11 numbers, and then converted to decimal. - Michael S. Branicky, Aug 06 2022

Crossrefs

Programs

  • Mathematica
    For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *)
  • PARI
    isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
    
  • Python
    from itertools import count, islice
    from sympy.ntheory import is_palindromic as ispal
    def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11))
    print(list(islice(agen(), 17))) # Michael S. Branicky, Aug 02 2022

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006
a(29) and beyond from Michael S. Branicky, Aug 07 2022

A135066 Primes p such that p^3 is a palindrome.

Original entry on oeis.org

2, 7, 11, 101
Offset: 1

Views

Author

Alexander Adamchuk, Nov 16 2007

Keywords

Comments

Note that all first 4 listed terms are the palindromes. Corresponding palindromic cubes a(n)^3 are listed in A135067 = {8, 343, 1331, 1030301, ...}. PrimePi[ a(n) ] = {1, 4, 5, 26, ...}.
No further terms less than 1.29 * 10^10. - Michael S. Branicky, Feb 07 2021

Examples

			a(3) = 11 because 11^3 = 1331 is a palindrome.
		

Crossrefs

Cf. A002780 (cube is a palindrome), A069748 (n and n^3 are both palindromes), A002781 (palindromic cubes), A135067 (palindromic cubes of primes).

Programs

  • Mathematica
    Do[ p = Prime[n]; f = p^3; If[ f == FromDigits[ Reverse[ IntegerDigits[ f ] ] ], Print[ {n, p, f} ]], {n, 1, 200000} ]
  • Python
    from sympy import nextprime
    def ispal(n): s = str(n); return s == s[::-1]
    p = 2
    while True:
      if ispal(p**3): print(p)
      p = nextprime(p) # Michael S. Branicky, Feb 07 2021

Formula

a(n) = A135067(n)^(1/3).

A135067 Palindromic cubes p^3, where p is a prime.

Original entry on oeis.org

8, 343, 1331, 1030301
Offset: 1

Views

Author

Alexander Adamchuk, Nov 16 2007

Keywords

Comments

Corresponding primes p such that a(n) = p^3 are listed in A135066 = {2, 7, 11, 101, ...} = Primes p such that p^3 is a palindrome. PrimePi[ a(n)^(1/3) ] = {1, 4, 5, 26, ...}.
No further terms up to the 100,000th prime. - Harvey P. Dale, Jan 26 2021

Examples

			a(3) = 1331 because 11^3 = 1331 is a palindrome and 11 is a prime.
		

Crossrefs

Cf. A002780 = Cube is a palindrome. Cf. A069748 = Numbers n such that n and n^3 are both palindromes. Cf. A002781 = Palindromic cubes. Cf. A135066 = Primes p such that p^3 is a palindrome.

Programs

  • Mathematica
    Do[ p = Prime[n]; f = p^3; If[ f == FromDigits[ Reverse[ IntegerDigits[ f ] ] ], Print[ {n, p, f} ]], {n, 1, 200000} ]
    Select[Prime[Range[200]]^3,PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 26 2021 *)

Formula

a(n) = A135066(n)^3.
Showing 1-6 of 6 results.