A069754 Counts transitions between prime and nonprime to reach the number n.
0, 1, 1, 2, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 14, 14, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 21, 22, 22, 22, 23, 24, 25, 26, 26, 26, 27, 28, 28, 28, 28, 28, 29, 30, 30, 30, 30, 30, 31, 32, 33, 34, 34, 34, 34, 34, 35, 36, 36, 36, 37, 38, 39
Offset: 1
Examples
a(6) = 4 because there are 4 transitions: 1 to 2, 3 to 4, 4 to 5 and 5 to 6.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Crossrefs
Programs
-
Haskell
a069754 1 = 0 a069754 2 = 1 a069754 n = 2 * a000720 n - 2 - (toInteger $ a010051 $ toInteger n) -- Reinhard Zumkeller, Dec 04 2012
-
Mathematica
For[lst={0}; trans=0; n=2, n<100, n++, If[PrimeQ[n]!=PrimeQ[n-1], trans++ ]; AppendTo[lst, trans]]; lst (* Second program: *) pts[n_]:=Module[{c=2PrimePi[n]},If[PrimeQ[n],c-3,c-2]]; Join[{0,1},Array[ pts,80,3]] (* Harvey P. Dale, Nov 12 2011 *) Accumulate[If[Sort[PrimeQ[#]]=={False,True},1,0]&/@Partition[ Range[ 0,80],2,1]] (* Harvey P. Dale, May 06 2013 *)
Formula
When n is prime, a(n) = 2*pi(n) - 3. When n is composite, a(n) = 2*pi(n) - 2. pi(n) is the prime counting function A000720.
Comments