A069999 Number of possible dimensions for commutators of n X n matrices; it is independent of the field. Or, given a partition P = (p_1, p_2, ..., p_m) of n with p_1 >= p_2 >= ... >= p_m, let S(P) = sum_j (2j-1)p_j; then a(n) = number of integers that are an S(P) for some partition.
1, 1, 2, 3, 5, 7, 9, 13, 18, 21, 27, 34, 39, 46, 54, 61, 72, 83, 92, 106, 118, 130, 145, 162, 176, 193, 209, 226, 246, 265, 284, 308, 330, 352, 375, 402, 426, 453, 480, 508, 538, 570, 598, 631, 661, 694, 730, 765, 800, 835, 872, 911, 951, 992, 1030, 1071, 1115
Offset: 0
References
- Zachary Albertson and Evan Willett, "Possible Dimensions of Commutators of Matrices", Senior Thesis, Wake Forest University, May 09, 2002.
- Noah A. Rosenberg, Mathematical Properties of Population-Genetic Statistics, Princeton University Press, 2025, page 112.
Links
- Joerg Arndt, Table of n, a(n) for n = 0..1000
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
- Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute (Massachusetts, 2019).
- Hideki Innan, Kangyu Zhang, Paul Marjoram, Simon Tavare, and Noah A. Rosenberg, Statistical tests of the coalescent model based on the haplotype frequency distribution and the number of segregating sites, Genetics 169 (2005), 1763-1777.
- Noah A. Rosenberg and Donna M. Zulman, Measures of care fragmentation: mathematical insights from population genetics, Health Services Research 55 (2020), 318-327.
- David Savitt and R. P. Stanley, A Note on the Symmetric Powers of the Standard Representation of S_n, Electronic J. Combinat, 7 (2000) #R6.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, {n}, {b(n, i-1)[], map(x-> x+i^2, b(n-i, min(n-i, i)))[]}) end: a:= n-> nops(b(n$2)): seq(a(n), n=0..56); # Alois P. Heinz, Jun 02 2022
-
Mathematica
p[n_, k_] := (IntegerPartitions[n]^2)[[k]]; s[n_, k_] := Sum[p[n, k][[i]], {i, 1, Length[p[n, k]]}]; t = Table[s[n, k], {n, 1, 20}, {k, 1, Length[IntegerPartitions[n]]}]; Table[Length[Union[t[[n]]]], {n, 1, 20}] (* Clark Kimberling, Mar 06 2012 *)
-
PARI
a069999(N)= \\ terms up to a(N), b-file format { my( V = vector(N) ); V[1] = 'x; print(1," ", 1 ); for (j=2, N, my( t = x^(j*j) ); for (a=1, j-1, my( b = j - a ); if ( a > b, break() ); t += V[a] * V[b]; ); t = Pol( apply( x->x!=0, Vec(t) ) ); print(j," ", vecsum( Vec(t) ) ); V[j] = t; ); } \\ Joerg Arndt, Apr 19 2019
Formula
No generating function is known.
Asymptotic to n^2/2. - Raphael R.M. Esquivel, Dec 19 2024
Extensions
More terms from Robert Gerbicz, Aug 27 2002
a(0)=1 prepended by Alois P. Heinz, Jun 02 2022
Comments