A354468 Number of possible ordered pairs (n_1, S) where (n_1, n_2, ..., n_k) is a partition of n, n_1 is the largest element of the partition, and S = Sum_{j=1..k} n_j^2.
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 39, 50, 66, 83, 104, 127, 157, 188, 225, 265, 312, 359, 418, 479, 547, 620, 700, 786, 884, 987, 1094, 1214, 1348, 1479, 1627, 1779, 1945, 2122, 2313, 2505, 2719, 2934, 3161, 3412, 3666, 3932, 4218, 4511, 4820, 5140, 5477, 5825
Offset: 0
Keywords
Examples
For n=4 the a(4)=5 ordered pairs are (4,16), (3,10), (2,8), (2,6), and (1,4).
References
- Noah A. Rosenberg, Mathematical Properties of Population-Genetic Statistics, Princeton University Press, 2025, page 112.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- Noah A. Rosenberg and Donna M. Zulman, Measures of care fragmentation: mathematical insights from population genetics, Health Services Research 55 (2020), 318-327.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, {n}, {b(n, i-1)[], map(x-> x+i^2, b(n-i, min(n-i, i)))[]}) end: a:= n-> add(nops(b(n-i, min(n-i, i))), i=signum(n)..n): seq(a(n), n=0..60); # Alois P. Heinz, Jun 02 2022
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {n}, Union@Flatten@{b[n, i-1], #+i^2& /@ b[n-i, Min[n-i, i]]}]; a[n_] := Sum[Length[b[n-i, Min[n-i, i]]], {i, Sign[n], n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 05 2022, after Alois P. Heinz *)
Extensions
a(16)-a(51) from Alois P. Heinz, Jun 02 2022
Comments