cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070039 Sum of the divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 7, 4, 3, 1, 10, 1, 3, 4, 7, 1, 11, 1, 7, 4, 3, 6, 10, 1, 3, 4, 12, 1, 12, 1, 7, 9, 3, 1, 16, 1, 8, 4, 7, 1, 12, 6, 14, 4, 3, 1, 21, 1, 3, 11, 7, 6, 12, 1, 7, 4, 15, 1, 24, 1, 3, 9, 7, 8, 12, 1, 20, 4, 3, 1, 23, 6, 3, 4, 15, 1, 26, 8, 7, 4, 3, 6
Offset: 1

Views

Author

Labos Elemer, Apr 19 2002

Keywords

Examples

			a(96) = 1+2+3+4+6+8+12 = 36; a(225) = 1+3+5+9 = 18.
		

Crossrefs

Programs

  • Maple
    seq(add(d, d in select(x->x^2Ridouane Oudra, Jun 24 2025
  • Mathematica
    di[x_] := Divisors[x] lds[x_] := Ceiling[DivisorSigma[0, x]/2] rd[x_] := Reverse[Divisors[x]] td[x_] := Table[Part[rd[x], w], {w, 1, lds[x]}] sud[x_] := Apply[Plus, td[x]] Table[DivisorSigma[1, w]-sud[w], {w, 1, 128}]
    Table[DivisorSum[n,#&,#Harvey P. Dale, Oct 26 2015 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, (d^2Michael Somos, Nov 19 2005 */

Formula

a(n) = sigma(n) - A070038(n).
a(n) = Sum_{n>=1} n*x^(n^2+n)/(1-x^n). - Vladeta Jovovic, Feb 09 2005
a(n) = Sum_{d|n, dWesley Ivan Hurt, Jun 17 2023
a(n) = A066839(n) - A037213(n). - Ridouane Oudra, Jun 24 2025