A079339 Least k such that the decimal representation of k*n contains only 1's and 0's.
1, 5, 37, 25, 2, 185, 143, 125, 12345679, 1, 1, 925, 77, 715, 74, 625, 653, 61728395, 579, 5, 481, 5, 4787, 4625, 4, 385, 40781893, 3575, 37969, 37, 3581, 3125, 3367, 3265, 286, 308641975, 3, 2895, 259, 25, 271, 2405, 25607, 25, 24691358, 23935, 213, 23125
Offset: 1
Examples
3*37 = 111 and no integer k < 37 has this property, hence a(3)=37.
References
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (terms 1..1999 from T. D. Noe, terms 2000..9998 from N. J. A. Sloane [based on A004290])
- Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
Programs
-
PARI
d(n,i)=floor(n/10^(i-1))-10*floor(n/10^i); test(n)=sum(i=1,ceil(log(n)/log(10)),if(d(n,i)*(1-d(n,i)),1,0)); a(n)=if(n<0,0,s=1; while(test(n*s)>0,s++); s)
Formula
a(n) = A004290(n)/n.
a(n) < 10^(n+1) / (9n). - Charles R Greathouse IV, Jan 09 2012
a(n) <= A244927(n), with equality for n <= 6. - M. F. Hasler, Mar 04 2025
Extensions
More terms from Vladeta Jovovic and Matthew Vandermast, Feb 14 2003
Definition simplified by Franklin T. Adams-Watters, Jan 09 2012
Comments