cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027719 Numbers k such that k^2 + 1 is a palindrome.

Original entry on oeis.org

0, 1, 2, 10, 25, 100, 1000, 1020, 1489, 2248, 10000, 10090, 100000, 100910, 102020, 167491, 1000000, 1000200, 1009090, 2744934, 10000000, 10000900, 10090910, 24917195, 100000000, 100909090, 103226660, 271867456, 1000000000, 1000002000, 1009090910, 1577033471
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; Select[Range[0, 10^5], palQ[#^2 + 1] &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A028504 Palindromes of form k*(k+2); or palindromes 1 less than a square.

Original entry on oeis.org

0, 3, 8, 99, 323, 575, 4224, 5775, 9999, 36863, 42024, 999999, 3055503, 3640463, 5597955, 8803088, 32855823, 99999999, 360696063, 422919224, 9999999999, 30485858403, 30536863503, 32154945123, 59080108095, 86310801368, 304816618403, 999999999999, 3490500050943
Offset: 1

Views

Author

Keywords

Comments

10^(2*m) - 1 for m > 0 are terms. - Chai Wah Wu, May 25 2017

Examples

			4224 belongs to this sequence as 4225 = 65^2.
		

Crossrefs

Programs

  • ARIBAS
    stop := 400000; m := 1; while m < stop do s := m*m - 1; if s = int_reverse(s) then write(s," "); end; inc(m); end;
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; Select[Range[10000]^2 - 1, palQ] (* Giovanni Resta, Aug 29 2018 *)
    Select[Table[n(n+2),{n,0,19*10^5}],PalindromeQ] (* Harvey P. Dale, Oct 13 2024 *)

Formula

a(n) = A028503(n) * (A028503(n) + 2) = A070253(n)^2 - 1 = A070254(n) - 1. - Giovanni Resta, Aug 29 2018

Extensions

More terms from Giovanni Resta, Aug 28 2018

A070254 Perfect squares one more than a palindrome.

Original entry on oeis.org

1, 4, 9, 100, 324, 576, 4225, 5776, 10000, 36864, 42025, 1000000, 3055504, 3640464, 5597956, 8803089, 32855824, 100000000, 360696064, 422919225, 10000000000, 30485858404, 30536863504, 32154945124, 59080108096, 86310801369, 304816618404, 1000000000000, 3490500050944
Offset: 1

Views

Author

Amarnath Murthy, May 06 2002

Keywords

Comments

All even powers of 10 are members of both A070254 and A027720.

Crossrefs

Programs

  • Mathematica
    Do[ If[a = IntegerDigits[n^2 - 1]; a == Reverse[a], Print[n^2]], {n, 1, 10^6}]
    Select[Range[300000]^2,PalindromeQ[#-1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = A070253(n)^2 = A028504(n) + 1. - Giovanni Resta, Aug 29 2018

Extensions

Edited by Jason Earls and Robert G. Wilson v, May 08 2002
Offset changed by and more terms from Giovanni Resta, Aug 28 2018

A028503 Numbers k such that k*(k+2) is a palindrome.

Original entry on oeis.org

0, 1, 2, 9, 17, 23, 64, 75, 99, 191, 204, 999, 1747, 1907, 2365, 2966, 5731, 9999, 18991, 20564, 99999, 174601, 174747, 179317, 243063, 293786, 552101, 999999, 1868287, 2967032, 9200156, 9999999, 22765895, 31552659, 93809716, 99999999, 185812387, 999999999
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; Select[Range[0, 10^5], palQ[# (# + 2)] &] (* Giovanni Resta, Aug 29 2018 *)

Formula

a(n) = A070253(n) - 1. a(n) * (a(n) + 2) = A028504(n). - Giovanni Resta, Aug 29 2018

Extensions

More terms from Giovanni Resta, Aug 28 2018

A358207 Numbers k such that k^2 + 2 is a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 8, 13, 19, 85, 258, 393, 828, 1811, 2538, 2916, 2986, 3627, 4540, 10503, 140833, 268865, 298436, 423437, 902696, 1050503, 1845571, 2491032, 5513951, 14365940, 25809892, 26237622, 28559254, 61875091, 79094282, 186062629, 246553448, 451977320, 452357920, 620208559, 813448358, 849937635
Offset: 1

Views

Author

Robert Xiao, Nov 04 2022

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = my(d=digits(k^2+2)); d == Vecrev(d); \\ Michel Marcus, Nov 04 2022
Showing 1-5 of 5 results.