A070262 5th diagonal of triangle defined in A051537.
5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675, 2805, 182, 3021, 783
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Crossrefs
Programs
-
Magma
[LCM(n + 4, n)/GCD(n + 4, n): n in [1..50]]; // G. C. Greubel, Sep 20 2018
-
Mathematica
Table[ LCM[i + 4, i] / GCD[i + 4, i], {i, 1, 60}] LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{5,3,21,2,45,15,77,6,117,35,165,12},90] (* Harvey P. Dale, Jul 13 2019 *)
-
PARI
Vec(x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017
-
PARI
a(n) = lcm(n+4,n)/gcd(n+4,n); \\ Altug Alkan, Sep 20 2018
Formula
a(n) = lcm(n + 4, n) / gcd(n + 4, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n>12. (End)
From Luce ETIENNE, May 10 2018: (Start)
a(n) = n*(n+4)*4^((5*(n mod 4)^3 - 24*(n mod 4)^2 + 31*(n mod 4)-12)/6).
a(n) = n*(n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. (End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 11/6.
Sum_{n>=1} (-1)^n/a(n) = 7/6.
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)
Extensions
Edited by Robert G. Wilson v, May 10 2002