A070337 a(n) = 2^n mod 27.
1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 25, 23, 19, 11, 22, 17, 7, 14, 1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 25, 23, 19, 11, 22, 17, 7, 14, 1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 25, 23, 19, 11, 22, 17, 7, 14, 1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 25, 23, 19, 11, 22, 17, 7
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
GAP
List([0..88],n->PowerMod(2,n,27)); # Muniru A Asiru, Jan 31 2019
-
Mathematica
PowerMod[2,Range[0,80],27] (* Harvey P. Dale, Mar 30 2012 *)
-
PARI
a(n)=lift(Mod(2,27)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(2,n,27)for n in range(0,71)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-9) + a(n-10).
G.f.: (1 + x + 2*x^2 + 4*x^3 + 8*x^4 - 11*x^5 + 5*x^6 + 10*x^7 - 7*x^8 + 14*x^9)/ ((1-x) * (1+x) * (x^2 - x + 1) * (x^6 - x^3 + 1)). (End)
a(n) = a(n-18). - G. C. Greubel, Mar 13 2016