A070384 a(n) = 5^n mod 37.
1, 5, 25, 14, 33, 17, 11, 18, 16, 6, 30, 2, 10, 13, 28, 29, 34, 22, 36, 32, 12, 23, 4, 20, 26, 19, 21, 31, 7, 35, 27, 24, 9, 8, 3, 15, 1, 5, 25, 14, 33, 17, 11, 18, 16, 6, 30, 2, 10, 13, 28, 29, 34, 22, 36, 32, 12, 23, 4, 20, 26, 19, 21, 31, 7, 35, 27, 24, 9, 8, 3, 15, 1, 5, 25, 14
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Magma
[Modexp(5, n, 37): n in [0..100]]; // Vincenzo Librandi, Jun 29 2016
-
Mathematica
a[n_]:=PowerMod[5,n,37];Table[a[n],{n,72}] (* Zak Seidov, Feb 08 2011 *)
-
PARI
a(n)=lift(Mod(5,37)^n) \\ M. F. Hasler, Feb 08 2011
-
PARI
a(n)=5^(n%36)%37 \\ M. F. Hasler, Feb 08 2011
-
Sage
[power_mod(5,n,37) for n in range(0,76)] # Zerinvary Lajos, Nov 26 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-18) + a(n-19).
G.f.: ( -1-4*x-20*x^2+11*x^3-19*x^4+16*x^5+6*x^6-7*x^7 +2*x^8+10*x^9 -24*x^10+28*x^11-8*x^12-3*x^13-15*x^14-x^15-5*x^16+12*x^17-15*x^18 ) / ( (x-1)*(x^2+1)*(x^4-x^2+1)*(x^12-x^6+1) ). (End)
a(n) = 37 - a(n-18). - Zak Seidov, Feb 08 2011
a(n) = a(n-36). - G. C. Greubel, Mar 16 2016
Comments