A070405 a(n) = 7^n mod 13.
1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1).
Programs
-
Magma
[Modexp(7, n, 13): n in [0..100]]; // Bruno Berselli, Mar 22 2016
-
Mathematica
PowerMod[7,Range[0,90],13] (* or *) LinearRecurrence[{1,0,0,0,0,-1,1},{1,7,10,5,9,11,12},100] (* Harvey P. Dale, May 20 2014 *)
-
PARI
a(n) = lift(Mod(7, 13)^n); \\ Altug Alkan, Mar 20 2016
-
Sage
[power_mod(7,n,13) for n in range(0,91)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-6) + a(n-7).
G.f.: ( -1-6*x-3*x^2+5*x^3-4*x^4-2*x^5-2*x^6 ) / ( (x-1)*(x^2+1)*(x^4-x^2+1) ). (End)
a(n) = a(n-12). - G. C. Greubel, Mar 20 2016