A070421 a(n) = 7^n mod 38.
1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11, 1, 7, 11
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
[Modexp(7, n, 19): n in [0..100]]; // Bruno Berselli, Mar 22 2016
-
Maple
seq(op([1, 7, 11]), n=0..50); # Wesley Ivan Hurt, Jun 29 2016
-
Mathematica
PowerMod[7, Range[0, 50], 38] (* G. C. Greubel, Mar 21 2016 *)
-
PARI
a(n)=lift(Mod(7,19)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(7,n,19) for n in range(0,90)] # or: [power_mod(7,n,38) for n in range(0,90)] # Zerinvary Lajos, Nov 27 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-3) for n>2.
G.f.: ( 1+7*x+11*x^2 ) / ( (1-x)*(1+x+x^2) ). (End)
a(n) = (19 - 16*cos(2*n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 29 2016
Comments