A070438 a(n) = n^2 mod 15.
0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
Mathematica
Table[Mod[n^2,15],{n,0,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1},97] (* Ray Chandler, Aug 26 2015 *)
-
PARI
a(n)=n^2%15 \\ Charles R Greathouse IV, Sep 28 2015
-
Sage
[power_mod(n,2,15)for n in range(0, 97)] # Zerinvary Lajos, Nov 06 2009
Formula
From Reinhard Zumkeller, Apr 24 2009: (Start)
a(m*n) = a(m)*a(n) mod 15.
a(15*n+7+k) = a(15*n+8-k) for k <= 15*n+7.
a(15*n+k) = a(15*n-k) for k <= 15*n.
a(n+15) = a(n). (End)
From R. J. Mathar, Mar 14 2011: (Start)
a(n) = a(n-15).
G.f.: -x*(1+x) *(x^12+3*x^11+6*x^10-5*x^9+15*x^8-9*x^7+13*x^6-9*x^5+15*x^4-5*x^3+6*x^2+3*x+1) / ( (x-1) *(1+x^4+x^3+x^2+x) *(1+x+x^2) *(1-x+x^3-x^4+x^5-x^7+x^8) ). (End)
G.f.: (x^14 +4*x^13 +9*x^12 +x^11 +10*x^10 +6*x^9 +4*x^8 +4*x^7 +6*x^6 +10*x^5 +x^4 +9*x^3 +4*x^2 +x)/(-x^15 +1). - Colin Barker, Aug 14 2012
Comments