A070471 a(n) = n^3 mod 5.
0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0, 1, 3, 2, 4, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
Cf. A010874.
Programs
-
Mathematica
CoefficientList[Series[-x (1 + 3 x + 2 x^2 + 4 x^3)/((x - 1) (1 + x + x^2 + x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, May 21 2014 *) PowerMod[Range[0, 100], 3, 5] (* G. C. Greubel, Mar 26 2016 *) Table[If[Mod[n, 5] == 0, 0, ModularInverse[n, 5]], {n, 0, 100}] (* Jean-François Alcover, May 03 2017 *)
-
PARI
my(x='x+O('x^99)); concat(0, Vec(-x*(1+3*x+2*x^2+4*x^3)/((x-1)*(1+x+x^2+x^3+x^4)))) \\ Altug Alkan, Mar 27 2016
-
PARI
a(n) = lift(Mod(n, 5)^3); \\ Michel Marcus, Jun 03 2025
-
Sage
[power_mod(n,3,5) for n in (0..101)] # Zerinvary Lajos, Oct 29 2009
Formula
a(n) = n^7 mod 5 since 7 == 3 (mod 5-1).
G.f.: -x*(1+3*x+2*x^2+4*x^3) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Dec 10 2010
a(n) = a(n-5). - G. C. Greubel, Mar 26 2016
a(n) = 10 - Sum_{k=1..4} a(n-k) for n > 3. - Nicolas Bělohoubek, Jun 03 2025
Comments