A070479 a(n) = n^3 mod 17.
0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Crossrefs
Cf. A008960.
Programs
-
Magma
[n^3 mod 17: n in [0..80]]; // Vincenzo Librandi, Jun 19 2014
-
Mathematica
Table[Mod[n^3, 17], {n, 0, 100}] (* Vincenzo Librandi, Jun 19 2014 *) PowerMod[Range[0,120],3,17] (* or *) PadRight[{},120,{0,1,8,10,13,6,12,3,2,15,14,5,11,4,7,9,16}] (* Harvey P. Dale, Nov 20 2024 *)
-
PARI
a(n)=n^3%17 \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[power_mod(n,3,17 )for n in range(0, 87)] # Zerinvary Lajos, Oct 29 2009
Formula
From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-17).
G.f.: (-x - 8x^2 - 10x^3 - 13x^4 - 6x^5 - 12x^6 - 3x^7 - 2x^8 - 15x^9 - 14x^10 - 5x^11 - 11x^12 - 4x^13 - 7x^14 - 9x^15 - 16x^16)/(-1 + x^17). (End)