cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070550 a(n) = a(n-1) + a(n-3) + a(n-4), starting with a(0..3) = 1, 2, 2, 3.

Original entry on oeis.org

1, 2, 2, 3, 6, 10, 15, 24, 40, 65, 104, 168, 273, 442, 714, 1155, 1870, 3026, 4895, 7920, 12816, 20737, 33552, 54288, 87841, 142130, 229970, 372099, 602070, 974170, 1576239, 2550408, 4126648, 6677057, 10803704, 17480760, 28284465, 45765226
Offset: 0

Views

Author

Sreyas Srinivasan (sreyas_srinivasan(AT)hotmail.com), May 02 2002

Keywords

Comments

Shares some properties with Fibonacci sequence.
The sum of any two alternating terms (terms separated by one other term) produces a Fibonacci number (e.g., 2+6=8, 3+10=13, 24+65=89). The product of any two consecutive or alternating Fibonacci terms produces a term from this sequence (e.g., 5*8 = 40, 13*5 = 65, 21*8 = 168).
In Penney's game (see A171861), the number of ways that HTH beats HHH on flip 3,4,5,... - Ed Pegg Jr, Dec 02 2010
The Ca2 sums (see A180662 for the definition of these sums) of triangle A035607 equal the terms of this sequence. - Johannes W. Meijer, Aug 05 2011

Examples

			G.f.: 1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 24*x^7 + ...
		

Crossrefs

Bisections: A001654, A059929.

Programs

  • Haskell
    a070550 n = a070550_list !! n
    a070550_list = 1 : 2 : 2 : 3 :
       zipWith (+) a070550_list
                   (zipWith (+) (tail a070550_list) (drop 3 a070550_list))
    -- Reinhard Zumkeller, Aug 06 2011
    
  • Maple
    with(combinat): A070550 := proc(n): fibonacci(floor(n/2)+1) * fibonacci(ceil(n/2)+2) end: seq(A070550(n),n=0..37); # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {1, 2, 2, 3}, 40] (* Jean-François Alcover, Jan 27 2018 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+b+d}; NestList[nxt,{1,2,2,3},40][[;;,1]] (* Harvey P. Dale, Jul 16 2024 *)
  • PARI
    A070550(n) = fibonacci(n\2+1)*fibonacci((n+5)\2) \\ M. F. Hasler, Aug 06 2011
    
  • PARI
    x='x+O('x^100); Vec((1+x)/(1-x-x^3-x^4)) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = F(floor(n/2)+1)*F(ceiling(n/2)+2), with F(n) = A000045(n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/(1-x-x^3-x^4) = (1+x)/((1+x^2)*(1-x-x^2))
a(n) = A126116(n+4) - F(n+3). - Johannes W. Meijer, Aug 05 2011
a(n) = (1+3*i)/10*(-i)^n + (1-3*i)/10*(i)^n + (2+sqrt(5))/5*((1+sqrt(5))/2)^n + (2-sqrt(5))/5*((1-sqrt(5))/2)^n, where i = sqrt(-1). - Sergei N. Gladkovskii, Jul 16 2013
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014
Sum_{n>=1} 1/a(n) = A290565. - Amiram Eldar, Feb 17 2021