A070592 Largest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.
3, 5, 17, 257, 65537, 6700417, 67280421310721, 5704689200685129054721, 93461639715357977769163558199606896584051237541638188580280321
Offset: 0
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 72.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..11
- C. L. Stewart, On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers, Proceedings of the London Mathematical Society, Vol. s3-35, No. 3 (1977), pp. 425-447. See p. 430.
- Eric Weisstein's World of Mathematics, Fermat Number.
Programs
-
PARI
a(n) = vecmax(factor(2^(2^n) + 1)[,1]); \\ Michel Marcus, Jul 05 2017
Formula
From Amiram Eldar, Oct 25 2024: (Start)
a(n) > c * n * 2^n for n >= 1, where c is a positive absolute constant (Stewart, 1977). (End)
Extensions
Offset changed by Arkadiusz Wesolowski, Jul 09 2011