cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097421 a(n) = (5^(2^n) - 1)/2^(n+2).

Original entry on oeis.org

1, 3, 39, 12207, 2384185791, 181898940354585647583, 2117582368135750847670806251699104905128479, 573971850987445072250359637315549647372395291392620860111695169081258427468128502368927
Offset: 0

Views

Author

Lekraj Beedassy, Aug 21 2004

Keywords

Crossrefs

Cf. A070632.

Programs

  • Mathematica
    Table[(5^(2^n)-1)/2^(n+2),{n,0,10}] (* Harvey P. Dale, Aug 07 2025 *)

A234039 a(n) = (2^(3^(n-1)) + 1)/3^n, n >= 1.

Original entry on oeis.org

1, 1, 19, 1657009, 9950006745799417075771, 19389268200585836264288587113776883575610248525384021488302948711030121
Offset: 1

Views

Author

Wolfdieter Lang, Feb 21 2014

Keywords

Comments

Essentially the same as A070632. - R. J. Mathar, Jun 13 2024
The sequence of the number of digits of a(n) is 1, 1, 2, 7, 22, 71, 217, 655, 1971, 5921, 17771, 53321, 159974, 479933, 1439810, ...
The proof that a(n) = (2^(3^(n-1)) + 1)/3^n, n >= 1, is indeed a natural number uses 2 = 3 - 1 and the binomial theorem.
Euler's theorem shows, in particular, that (4^(3^(n-1)) - 1)/3^n is a natural number (see A152007).
From Jianing Song, Dec 27 2022: (Start)
Note that a(n)/a(n-1) = 1 + ((2^(3^(n-2)) - 2)/3) * a(n-1) * 3^(n-1) for n >= 2. As a result:
(a) 19 is the only prime in this sequence;
(b) a(m) == a(n) (mod 3^n) for all m >= n. This means that this sequence converges to ...210120102112201 in the ring of 3-adic integers. In particular, all terms are congruent to 1 modulo 9. But a(m) !== a(n) (mod 3^n) for all m < n unless m = 1 and n = 2, because 1 < m < n implies that a(m) !== a(m+1) == a(n) (mod 3^(m+1)). (End)

Crossrefs

Cf. A152007.

Programs

  • Magma
    [(2^(3^(n-1)) + 1)/3^n: n in [1..8]]; // Vincenzo Librandi, Feb 23 2014
  • Mathematica
     Table[(2^(3^(n - 1)) + 1)/3^n, {n, 1, 10}] (* Vincenzo Librandi, Feb 23 2014 *)

Formula

a(n) = (2^(3^(n-1)) + 1)/3^n, n >= 1.
a(n) = (2^(phi(3^n)/2) + 1)/3^n, n >= 1, with Euler's phi(k)= A000010(k).
Showing 1-2 of 2 results.