cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261066 a(n) = (7^(2^n) - 1) / 2^(n+2).

Original entry on oeis.org

6, 150, 180150, 519264540150, 8628341205030630049260150, 4764689404827483203666304150636608674826622242700150
Offset: 1

Views

Author

Marco Ripà, Aug 08 2015

Keywords

Comments

(m^(2^n)-1)/2^(n+2) is an integer for any odd value of m and n>0.
The next term, a(7), has 106 decimal digits.

Examples

			a(3) = (7^8 - 1)/2^5 = 180150.
		

Crossrefs

Programs

Formula

a(n) == 150 (mod 10^4) for all n > 1. - M. F. Hasler, Aug 11 2015

Extensions

a(5) corrected by Vincenzo Librandi, Aug 09 2015

A359500 a(n) = (7^2^n - 1)/2^(n+3).

Original entry on oeis.org

3, 75, 90075, 259632270075, 4314170602515315024630075, 2382344702413741601833152075318304337413311121350075, 1452944967966417671787414728262962471027692106596483349510252251060925112718067382475349181570930962790075
Offset: 1

Views

Author

Jianing Song, Jan 03 2023

Keywords

Crossrefs

A261066 is twice this sequence.
Cf. {odd part of m^2^n - 1}: A068531 (m=3 or m=9), A097421 (m=5), this sequence (m=7).

Programs

  • PARI
    a(n) = (7^2^n - 1)/2^(n+3)
    
  • Python
    def A359500(n): return 7**(1<>n+3 # Chai Wah Wu, Jan 15 2023

Formula

a(n)/a(n-1) = (7^2^(n-1) + 1)/2 = 2^(n+1) * a(n-1) + 1.
For all n > m, a(n) and a(m) are congruent modulo 2^(m+2) but not modulo 2^(m+3).

A261067 a(n) = (11^(2^n) - 1)/2^(n + 2).

Original entry on oeis.org

15, 915, 6698715, 717964529118315, 16495138082306681918325119173515, 17413733142679306233865281770975943513633443105435651232476307915
Offset: 1

Views

Author

Marco Ripà, Aug 08 2015

Keywords

Comments

(m^(2^n) - 1)/2^(n + 2) is an integer for any odd value of m and n > 0.
In particular, for m = 11, a(n) is a multiple of 15.

Examples

			a(3) = (11^8 - 1)/2^5 = 6698715.
		

Crossrefs

Programs

Formula

a(n) = 15*A068533(n). - Michel Marcus, Aug 14 2015
Showing 1-3 of 3 results.