cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070739 Primes of form 2^x + 2^y + 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 37, 41, 67, 73, 97, 131, 137, 193, 257, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65537, 65539, 133121, 147457, 163841, 262147, 262153, 262657
Offset: 1

Views

Author

Benoit Cloitre, May 14 2002

Keywords

Comments

This sequence is the union of A081091 and the Fermat primes, A000215. - T. D. Noe, Jun 22 2007
Odd primes with Hamming weight (A000120) at most three. - Jeppe Stig Nielsen, Dec 09 2020

Examples

			41 = 2^5 + 2^3 + 1, hence 41 is in the sequence.
		

Crossrefs

Programs

  • Maple
    k := 0:for i from 1 to 140 do for j from i to 140 do if isprime(2^i+2^j+1) then k := k+1:c[k] := 2^i+2^j+1:fi:od:od:sort([3,seq(c[i],i=1..k)]);# gives all terms up to 2^140
  • Mathematica
    f[x_,y_]:=2^x+2^y+1; imax=20; lst={}; Do[p=f[x,y]; If[p<2^imax+3 && PrimeQ[p], AppendTo[lst,p]], {y, 0, imax}, {x, 0, y}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
    Union[Select[Total/@(2^#&/@Union[Sort[Tuples[Range[0,20],2]]])+1,PrimeQ]] (* Harvey P. Dale, Jun 06 2020 *)
  • PARI
    for(n=1,300,if(sum(i=0,n,sum(j=0,i,if(2^i+2^j+1-prime(n),0,1)))>0,print1(prime(n),",")))

Extensions

More terms from Sascha Kurz, Aug 15 2002