A070860 Decimal expansion of Pi^2/12 - gamma^2 /2.
6, 5, 5, 8, 7, 8, 0, 7, 1, 5, 2, 0, 2, 5, 3, 8, 8, 1, 0, 7, 7, 0, 1, 9, 5, 1, 5, 1, 4, 5, 3, 9, 0, 4, 8, 1, 2, 7, 9, 7, 6, 6, 3, 8, 0, 4, 7, 8, 5, 8, 4, 3, 4, 7, 2, 9, 2, 3, 6, 2, 4, 4, 5, 6, 8, 3, 8, 7, 0, 8, 3, 8, 3, 5, 3, 7, 2, 2, 1, 0, 2, 0, 8, 6, 1, 8, 2, 8, 1, 5, 9, 9, 4, 0, 2, 1, 3, 6, 4, 0, 0, 0, 4, 8
Offset: 0
Examples
0.65587807152025388107701951514539048127976638047858434729236244568387...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- R. J. Mathar, Erratum to Exercise A4.2 in "An Introduction to the Theory of the Riemann Zeta Function", viXra:2507.0094 (2025)
- S. J. Patterson, An introduction to the theory of the Riemann zeta function, Cambridge studies in advanced mathematics no. 14, (1988) p. 135
Programs
-
Magma
R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // G. C. Greubel, Sep 05 2018
-
Mathematica
RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
-
PARI
-(Euler^2-zeta(2))/2
Comments